

Home Search Collections Journals About Contact us My IOPscience

Layering transitions at an interface

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1986 J. Phys. A: Math. Gen. 19 3165 (http://iopscience.iop.org/0305-4470/19/15/037)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 31/05/2010 at 10:04

Please note that terms and conditions apply.

# Layering transitions at an interface

K Armitstead, J M Yeomans and P M Duxbury

Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK

Received 1 January 1986

Abstract. Low temperature series are used to analyse the wetting of an interface in the three-dimensional three-state chiral clock model. When the calculation is taken to general order using a matrix formulation, a large number of layering transitions are found as a function of the chiral field.

#### 1. Introduction

Surface and interface properties are the subject of considerable interest at present. Research into wetting, surface reconstruction and interfacial adsorption is of relevance in many physical and biological fields (de Gennes 1985, Lipowsky 1985, Telo da Gama 1985). In this paper our aim is to study interfacial wetting in a three-dimensional spin model, the chiral clock model (Huse 1981, Ostlund 1981). We show, using series methods at low temperatures, that the interface wets through a large number of first-order phase transitions.

The three-state chiral clock model is defined by the Hamiltonian

$$H = -J_0 \sum_{\langle ij \rangle}^{\perp} \cos[2\pi(n_i - n_j)/3] - J \sum_{\langle ij \rangle}^{\parallel} \cos[2\pi(n_i - n_j + \Delta)/3]$$
(1)

where  $n_i = 0, 1, 2$  is a variable on each site, *i*, of a cubic lattice. The first sum is taken over nearest neighbours within two-dimensional layers, whereas the second is between nearest neighbours along the perpendicular axial direction. The ground state therefore has ferromagnetic layers, although the value of  $n_i$  may vary from layer to layer: for  $\Delta < \frac{1}{2}$  the ordering between layers is ferromagnetic; for  $\Delta > \frac{1}{2}$ , however, there is a chiral ground state, ...012 012 012...

To study the interface properties of the three-state chiral clock model (Huse and Fisher 1984), we introduce an interface perpendicular to the chiral direction by setting the spins at  $\pm \infty$  to the values 0 and 2 respectively. This introduces a 0:2 interface for sufficiently small  $\Delta$ . As  $\Delta$  is increased, however, the energy of a 0:1 interface (and equivalently 1:2 and 2:0) decreases, whereas that of a 0:2 interface increases. Hence it becomes favourable at a certain value,  $\Delta = \frac{1}{4}$ , for the interface to wet and for the simple 0:2 interface to be replaced by the configuration 0:11...11:2. Note that this is a purely energetic (zero temperature) argument and that the number of ones between the boundaries is arbitrary.

At finite temperature entropy contributions will also be important. It is the aim of this paper to show that these determine *n*, the number of layers with  $n_i = 1$ , in the region of  $\Delta = \frac{1}{4}$  where the interface wets. We shall show, using a low temperature series

0305-4470/86/153165+20\$02.50 © 1986 The Institute of Physics

expansion (Fisher and Selke 1980, 1981), that the wetting takes place through a series of first-order transitions with n increasing in integer steps and shall find the width in  $\Delta$  of each interfacial phase.

The next section of this paper is devoted to describing the low temperature expansion and giving explicit results to third order. Hence we show how the series of interface transitions is built up. To this order we can see n = 1 and n = 2 appearing. To go further, however, and construct the complete series of phases it is necessary to pick out and compute the relevant terms in the low temperature expansion to all orders. The results of the general order calculation are presented in § 3 with the details of the matrix technique used being postponed to the appendices. Section 4 provides a conclusion where a comparison to similar wetting phenomena is given.

# 2. Low temperature expansion

To determine the behaviour of the interface in the vicinity of  $\Delta = \frac{1}{4}$  we use a low temperature series technique and expand about all possible ground states. The standard low temperature expansion (Domb 1960) follows from a decomposition of the partition function

$$Z_{N}(n) = \exp[-NE_{0}(n)/k_{\rm B}T] \left(1 + \sum_{m=1}^{\infty} \Delta Z_{N}^{(m)}\right)$$
(2)

where  $\Delta Z_N^{(m)}$  is the total contribution from states with *m* overturned spins,  $E_0$  is the ground state energy per spin and *N* is the number of spins in the lattice. Using the linked cluster theorem (Domb 1960) the reduced free energy per spin is then given by

$$F = -\frac{F_N(n)}{Nk_{\rm B}T} = -\frac{E_0}{k_{\rm B}T} + \frac{\Sigma' \,\Delta Z_N^{(m)}}{N}$$
(3)

where  $\Sigma' \Delta Z_N^{(m)}$  now only contains terms linear in N.

We first establish a notation for the primitive Boltzmann factors corresponding to single spin flips which appear in (3). It is useful to define

$$K_0 = J_0/k_B T \qquad K = J/k_B T$$
  

$$\delta = \Delta - \frac{1}{4} \qquad c = \cos(2\pi\delta/3) \qquad s = \sin(2\pi\delta/3) \qquad (4)$$

where  $k_{\rm B}$  is Boltzmann's constant and T is the temperature. Then changing an in-layer bond from ferromagnetic to antiferromagnetic corresponds to a factor

$$\omega = \exp(-3K_0/2). \tag{5}$$

Two independent Boltzmann weights are needed to describe the effects of flipping spins on axial bonds:

$$0-0 \to 0-1: \qquad x = \exp[\frac{1}{2}K(3s - \sqrt{3}c)] 0-0 \to 0-2: \qquad y = \exp[-\sqrt{3}cK] 0-1 \to 0-2: \qquad x^{-1}y = \exp[\frac{1}{2}K(-\sqrt{3}c - 3s)].$$
(6)

(All other possibilities follow immediately from these equations when the symmetries of the different spin states are considered.)

As we aim to establish the equilibrium position of the interfaces imposed on the system, it is most convenient to calculate  $F_n - F_{\infty}$ , where  $F_n$  is the reduced free energy of the system when n layers of ones appear at the interface; this is because most graphs

cancel out when considering this free energy difference and the resulting counts depend only on the number of spins in the interface. We describe in some detail the results of the low temperature expansion up to third order to clarify the method of calculation and the notation used.

#### 2.1. Ground state

From (1) it follows immediately that

$$(E_n - E_\infty)/k_{\rm B}T = 3sK \qquad n = 0 \tag{7a}$$

$$= 0 \qquad n \ge 1 \tag{7b}$$

showing that the interface wets at  $\Delta = \frac{1}{4}$ , and that, for  $\Delta > \frac{1}{4}$ , all values of  $n \neq 0$  correspond to the same interface energy.

### 2.2. First order

The first-order contributions to  $F_0 - F_\infty$  and  $F_1 - F_\infty$  are shown in tables 1(a) and (b) respectively. The first column in the table shows the spin to be flipped; spins in different environments must be considered separately as they correspond to different Boltzmann weights. The second column gives the count per interface spin corresponding to each configuration. Only the term proportional to M, the number of spins per layer, is quoted as those terms proportional to higher-order powers of M and to N drop out when the linked cluster theorem is used in the expansion of the free energy. The weights are given in the third column of the table.  $q_{\perp}$  is the number of nearest neighbours within a layer; for our case of the simple cubic lattice,  $q_{\perp} = 4$ . A moment's thought shows that to this order  $F_n - F_\infty = 0$ ,  $n \ge 2$ , because no single flip can span the distance between the interfaces and hence distinguish between the different values of n.

Summing the contributions in the table gives

$$F_0^{(1)} - F_\infty^{(1)} = (-2 + 2x^2y^{-1} + 4xy - 4x^{-1}y^2)\omega^{q_-}$$
(8a)

$$F_1^{(1)} - F_\infty^{(1)} = (-2 + 2x^{-2}y + 2xy - 2x^{-1}y^2)\omega^{q_\perp}$$
(8b)

$$F_n^{(1)} - F_\infty^{(1)} = 0 \qquad n \ge 2.$$
 (8c)

Table 1.

(a) First-order contributions to  $F_0 - F_{\infty}$ .

| Configuration | Count | Boltzmann weight          |  |
|---------------|-------|---------------------------|--|
| 002           | 2     | $(1+x^2y^{-1})\omega^{q}$ |  |
| 0 <i>0</i> 1  | -4    | $(1+x^{-1}y^2)\omega^{q}$ |  |
| 0 <i>0</i> 0  | 2     | $2xy\omega^{q}$           |  |
| Configuration | Count | Boltzmann weight          |  |
| 001           | -2    | $(1+x^{-1}y^2)\omega^{q}$ |  |
| 012           | 1     | $(2x^{-2}y)\omega^{q}$    |  |
| 0.00          | 1     | 2                         |  |

We may write

$$y = x^{2+\alpha} \tag{9}$$

and, noting from (6) that

$$\alpha \log x = -3Ks \tag{10}$$

expand (7) and (8) to leading order to give

$$F_0 - F_\infty = -3Ks + O(\omega^{2q_--1})$$
(11a)

$$F_1 - F_\infty \sim \mathcal{O}(\omega^{2q_1 - 1}) \tag{11b}$$

assuming, as will be shown to be consistent later,  $\alpha \log x \sim O(\omega^{q_{\perp}-1})$ . Therefore, to this order, the free energy of the interface is independent of the value of *n* at  $\Delta = \frac{1}{4}$ .

### 2.3. Second order

The second-order contributions to the free energy differences  $F_0 - F_{\infty}$ ,  $F_1 - F_{\infty}$  and  $F_2 - F_{\infty}$  are shown in tables 2(a), (b) and (c). Boltzmann weights now depend on the relative positions of the two flipped spins. To emphasise the pattern in successive terms of the expansion we have divided the contributing graphs into connected graphs grouped with their decompositions. Summing contributions in the tables gives

$$F_{0}^{(2)} - F_{\infty}^{(2)} = (-4 + 4x^{4}y^{-2} + 8x^{2}y^{2} - 8x^{-2}y^{4})\omega^{2q_{\perp}-2} + (-16x^{-1}y_{\perp}^{2} + 8x^{2}y^{-1} + 8x^{2}y^{2})\omega^{2q_{\perp}-1} + (4 - 7x^{2}y^{-1} - 6x^{4}y^{-2} + 5xy + 14x^{-1}y^{2} - x^{3} - 32x^{2}y^{2} + 11y^{3} + 12x^{-2}y^{4})\omega^{2q_{\perp}}$$
(12a)

$$F_{1}^{(2)} - F_{\infty}^{(2)} = (-4 + 4x^{-4}y^{2} - 4x^{-2}y^{4} + 4x^{2}y^{2})\omega^{2q_{\perp}-2} + (4x^{-4}y^{2} - 8x^{-1}y^{2} + 4x^{2}y^{2})\omega^{2q_{\perp}-1} + (7 - 2x^{-2}y - 10x^{-4}y^{2} + 12x^{-1}y^{2} + 2x^{3} - 4x^{-3}y^{3} + 6y^{3} + 7x^{-2}y^{4} - 18x^{2}y^{2})\omega^{2q_{\perp}}$$
(12b)

$$F_{2}^{(2)} - F_{\infty}^{(2)} = (-3 + 3x^{-2}y + 4xy - 5x^{-1}y^{2} + x^{3} + 5y^{3} - x^{-2}y^{4} - 4x^{2}y^{2})\omega^{2q}$$
(12c)

$$F_n^{(2)} - F_\infty^{(2)} = 0 \qquad n \ge 3.$$
 (12d)

Using (8), (9) and (10) we obtain

$$F_0 - F_{\infty} = -3Ks + 6Ks(1 + 2x^3)\omega^{q_{\perp}} + 8(1 - x^3)^2\omega^{2q_{\perp}-1} - 9(1 - x^3)^2\omega^{2q_{\perp}} + O(\omega^{3q_{\perp}-4})$$
(13a)

$$F_1 - F_\infty = -6Ks(1 - x^3)\omega^{q_\perp} + (1 - x^3)^2(4 - 5\omega)\omega^{2q_\perp - 1} + O(\omega^{3q_\perp - 3})$$
(13b)

$$F_2 - F_\infty \sim \mathcal{O}(\omega^{3q_\perp - 1}). \tag{13c}$$

On the boundary between n = 0 and  $n = \infty$ , defined in first order by (11*a*),  $F_1 - F_{\infty}$  is positive. Hence the n = 1 phase must be stable in its vicinity.

The new boundaries which appear to this order between the interface phases with n = 0, 1 and  $\infty$  follow immediately from (13a) and (13b) to be

0:1 
$$3Ks_{0:1} = (1-x^3)^2(4-4\omega)\omega^{2q_--1} + O(\omega^{3q_--4})$$
 (14a)

1:\infty 3Ks<sub>1:\infty</sub> = 
$$\frac{1}{2}(1-x^3)(4-5\omega)\omega^{q_{\perp}-1} + O(\omega^{2q_{\perp}-3}).$$
 (14b)

Table 2. Disconnected configurations have been grouped with the corresponding connected configurations. A vertical or horizontal bar denotes a disconnection.

| (a) | Second-orde | r contributions | to | $F_0 -$ | $F_{\infty}$ . |
|-----|-------------|-----------------|----|---------|----------------|
|-----|-------------|-----------------|----|---------|----------------|

| Configuration | Count                                                                                                                                                         | Boltzmann weight                                                                                                                                                                                              |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00 01         | -4                                                                                                                                                            | $(1+xy+2x^{-1}y^2)\omega^{2q_{\perp}}$                                                                                                                                                                        |
| 00 01         | 4                                                                                                                                                             | $(1+x^{-1}y^2)2xy\omega^{2q_\perp}$                                                                                                                                                                           |
| 00 11         | -2                                                                                                                                                            | $(3xy + x^{-1}y^2)\omega^{2q}$                                                                                                                                                                                |
| 00 11         | 2                                                                                                                                                             | $(1+x^{-1}y^2)^2\omega^{2q}$                                                                                                                                                                                  |
| 00 22         | 1                                                                                                                                                             | $(3xy+x^2y^{-1})\omega^{2q}$                                                                                                                                                                                  |
| 00 22         | -1                                                                                                                                                            | $(1+x^2y^{-1})^2\omega^{2q_\perp}$                                                                                                                                                                            |
| 00 02         | 2                                                                                                                                                             | $(1+2x^2y^{-1}+xy)\omega^{2q}$                                                                                                                                                                                |
| 00 02         | -2                                                                                                                                                            | $(1+x^2y^{-1})2xy\omega^{2q_\perp}$                                                                                                                                                                           |
| 00 00         | 3                                                                                                                                                             | $(2xy+x^3+y^3)\omega^{2q_\perp}$                                                                                                                                                                              |
| 00 00         | -3                                                                                                                                                            | $(2xy)^2\omega^{2q}$                                                                                                                                                                                          |
| 0 <i>0</i> 1  | -8                                                                                                                                                            | $(1+x^{-2}y^4)\omega^{2q_+-2}+2x^{-1}y^2\omega^{2q_+-1}$                                                                                                                                                      |
| 0 <i>0</i> 1  |                                                                                                                                                               |                                                                                                                                                                                                               |
| 0 <u>0</u> 1  | 10                                                                                                                                                            | $(1+x^{-1}y^2)^2\omega^{2q}$                                                                                                                                                                                  |
| 0 <i>0</i> 1  |                                                                                                                                                               |                                                                                                                                                                                                               |
| 0 <i>0</i> 2  | 4                                                                                                                                                             | $(1+x^4y^{-2})\omega^{2q_{\perp}-2}+2x^2y^{-1}\omega^{2q_{\perp}-1}$                                                                                                                                          |
| 0 <i>0</i> 2  |                                                                                                                                                               |                                                                                                                                                                                                               |
| 0 <u>0</u> 2  | -5                                                                                                                                                            | $(1+x^2y^{-1})^2\omega^{2q_\perp}$                                                                                                                                                                            |
| 0 <i>0</i> 2  |                                                                                                                                                               |                                                                                                                                                                                                               |
| 0 <i>0</i> 0  | 4                                                                                                                                                             | $2x^2y^2(\omega^{2q_{\perp}-2}+\omega^{2q_{\perp}-1})$                                                                                                                                                        |
| 0 <i>0</i> 0  |                                                                                                                                                               |                                                                                                                                                                                                               |
| 0 <u>0</u> 0  | -5                                                                                                                                                            | $(2xy)^2\omega^{2q_\perp}$                                                                                                                                                                                    |
| 0 <i>0</i> 0  |                                                                                                                                                               |                                                                                                                                                                                                               |
|               | Configuration<br>00 01<br>00 01<br>00 11<br>00 11<br>00 22<br>00 22<br>00 02<br>00 02<br>00 00<br>00 00<br>001<br>001<br>001<br>001<br>001<br>002<br>002<br>0 | Configuration         Count $00 01$ -4 $00 01$ 4 $00 11$ -2 $00 11$ 2 $00 22$ 1 $00 22$ -1 $00 22$ -2 $00 02$ -2 $00 00$ -3 $00 00$ -3 $001$ -8 $001$ -8 $001$ -00 $002$ 4 $002$ -5 $000$ 4 $000$ -5 $000$ -5 |

| (b) | Second-order | contributions | to | $F_1$ – | $F_{\infty}$ . |
|-----|--------------|---------------|----|---------|----------------|
|-----|--------------|---------------|----|---------|----------------|

|   | Configuration | Count          | Boltzmann weight                                            |
|---|---------------|----------------|-------------------------------------------------------------|
| 1 | 0 <i>00</i> 1 | -2             | $(1+xy+2x^{-1}y^2)\omega^{2q}$                              |
|   | 00 01         | 2              | $(2xy+2y^3)\omega^{2q_\perp}$                               |
| 2 | 0011          | -2             | $(3xy + x^{-1}y^2)\omega^{2q}$                              |
|   | 00 11         | 2              | $(1+x^{-2}y^4+2x^{-1}y^2)\omega^{2q}$                       |
| 3 | 0012          | 2              | $(1+2x^{-1}y^2+x^{-2}y)\omega^{2q}$                         |
|   | 00 12         | -2             | $(2x^{-2}y+2x^{-3}y^3)\omega^{2q_{\perp}}$                  |
| 4 | 0 <i>00</i> 0 | 2              | $(2xy + x^3 + y^3)\omega^{2q}$                              |
|   | 00 00         | -2             | $4x^2y^2\omega^{2q_{\perp}}$                                |
| 5 | 001           | -4             | $(1+x^{-2}y^4)\omega^{2q_1-2}+2x^{-1}y^2\omega^{2q_1-1}$    |
|   | 001           |                |                                                             |
|   | 0 <u>0</u> 1  | 5              | $(1+x^{-2}y^4+2x^{-1}y^2)\omega^{2q_\perp}$                 |
|   | 001           |                |                                                             |
| 6 | 012           | 2              | $2x^{-4}y^{2}(\omega^{2q_{\perp}-2}+\omega^{2q_{\perp}-1})$ |
|   | 012           |                | • • •                                                       |
|   | 0 <u>1</u> 2  | $-\frac{5}{2}$ | $4x^{-4}y^2\omega^{2q_\perp}$                               |
|   | 012           |                |                                                             |
| 7 | 0 <i>0</i> 0  | 2              | $2x^2y^2(\omega^{2q_{\perp}-2}+\omega^{2q_{\perp}-1})$      |
|   | 0 <i>0</i> 0  |                |                                                             |
|   | 0 <u>0</u> 0  | $-\frac{5}{2}$ | $4x^2y^2\omega^{2q_\perp}$                                  |
|   | 0 <i>0</i> 0  |                |                                                             |
|   |               |                |                                                             |

Table 2. (continued).

(c) Second-order contributions to  $F_2 - F_{\infty}$ .

|   | Configuration | Count | Boltzmann weight                            |
|---|---------------|-------|---------------------------------------------|
| 1 | 0001          | -2    | $(1+xy+2x^{-1}y^2)\omega^{2q}$              |
|   | 00 01         | 2     | $(2xy+2y^3)\omega^{2q}$                     |
| 2 | 0112          | 1     | $(3x^{-2}y + x^{-1}y^2)\omega^{2q_{\perp}}$ |
|   | 01 12         | -1    | $(1+x^{-2}y^4+2x^{-1}y^2)\omega^{2q}$       |
| 3 | 0000          | 1     | $(2xy+x^3+y^3)\omega^{2q_\perp}$            |
|   | 00 00         | -1    | $4x^2y^2\omega^{2q}$                        |

The boundaries are plotted in figure 1 for  $J = J_0$ . On the 1: $\infty$  boundary all phases with  $n \ge 1$  remain degenerate and we must consider higher-order terms in the series expansion to test their stability.

# 2.4. Third order

The third-order contributions to the energy differences  $F_1 - F_{\infty}$ ,  $F_2 - F_{\infty}$  and  $F_3 - F_{\infty}$ are shown in tables 3(*a*), (*b*) and (*c*). Boltzmann weights depend on three flipped spins, which give a large number of possible graphs. These results have been displayed explicitly because it will be useful in § 3 to distinguish between the various contributions to the free energy difference. From the results in the tables one finds that on the boundary between n = 1 and  $n = \infty$ 

$$F_2 - F_{\infty} = \frac{1}{2}(1 - x^3)^3 (4 - 5\omega)\omega^{3q_{\perp} - 1} + O(\omega^{4q_{\perp} - 3})$$
(15a)

$$F_3 - F_\infty \sim O(\omega^{4q_\perp - 1})$$
  $n = 3.$  (15b)

The expression in (15a) is positive and hence the n = 2 phase is stabilised at this order of the expansion.



Figure 1. Boundaries between different interface phases calculated for  $J_0 = J = 1$  including terms to fourth order.

1:2 
$$3Ks_{1:2} = \frac{1}{2}(1-x^3)(4-5\omega)\omega^{q_{\perp}-1} + O(\omega^{2q_{\perp}-3})$$
 (16a)

2: 
$$\infty$$
 3Ks<sub>2: $\infty$</sub>  =  $\frac{2}{3}(1-x^3)(4-5\omega)\omega^{q_{\perp}-1}+O(\omega^{2q_{\perp}-3})$ . (16b)

On the  $2:\infty$  boundary all phases with  $n \ge 2$  remain degenerate and again we must consider higher-order terms in the series expansion to test their stability. An explicit calculation rapidly becomes impossible, but we now show that it is possible to pick out the important terms at each order of the series expansion.

### 3. General order

To proceed with the calculation, and build up the interfacial phase diagram, we need to establish the leading-order contribution to  $F_n - F_{\infty}$  (Fisher and Selke 1980, 1981, Yeomans and Fisher 1984). It is intuitively obvious that the important graphs must span the distance between the two interfaces. The lowest-order graphs to do this will be chains of *n* spins parallel to the axial direction, as shown in figure 2(a). Four such graphs remain when the difference in free energies is taken. These are listed for n = 2 in table 2(c) and for n = 3 in table 3(c). It is also apparent from the tables that we must consider all disconnected decompositions of the connected graphs, with each *m*-fold decomposition contributing a factor  $(-1)^m$  (Fisher and Selke 1981).

To count all contributions from such axial graphs of general length together with their decompositions it is possible to use a transfer matrix method introduced by



Figure 2. Graphs based on axially connected chains of *n* spins which contribute to  $F_n - F_{\infty}$  to order (a)  $\omega^{nq_{\perp}}$ , (b)  $\omega^{(n+1)q_{\perp}}$ , (c)  $\omega^{(n+2)q_{\perp}-4}$  and (d)  $\omega^{(n+3)q_{\perp}-8}$ .

**Table 3.** Disconnected configurations have been grouped with the corresponding connected configurations. A vertical or horizontal bar denotes a disconnection.

(a) Third-order contribution to  $F_1 - F_{\infty}$ .

|   | Configuration            | Count | Boltzmann weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|--------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | 0 <i>000</i> 1           | -2    | $(1+3xy+3x^{-1}y^2+y^3)\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 00 001                   | 2     | $(1+xy+2x^{-1}y^2)2xy\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | 000 01                   | 2     | $(1+x^{-1}y)(2xy+x^3+y^3)\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 00 0 01                  | -2    | $(2xy)^2(1+x^{-1}y^2)\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2 | 0 <i>001</i> 1           | -4    | $(4xy + x^3 + 2y^3 + x^{-1}y^2)\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | 000 11                   | 4     | $(1+xy+2x^{-1}y^2)(1+x^{-1}y^2)\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | 00 01 1                  | 4     | $(3xy+x^{-1}y^2)2xy\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 00 0 11                  | -4    | $(1+x^{-1}y^2)^2 2xy\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3 | 0 <i>001</i> 2           | 2     | $(2+xy+3x^{-1}y^2+yx^{-2}+x^{-2}y^4)\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | 0 <i>00</i>  12          | -2    | $(1+xy+2x^{-1}y^2)2x^{-2}y\omega^{3q_{\pm}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | 00 012                   | -2    | $(1+2x^{-1}y^2+x^{-2}y)2xy\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | 00 0 12                  | 2     | $(4x^{-1}y^2)(1+x^{-1}y^2)\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4 | 00122                    | 1     | $(4xy+4x^{-1}y^2)\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | 001 22                   | -1    | $(1+x^{-1}y^2)(1+x^{-2}y+2x^{-1}y^2)\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | 00 122                   | -1    | $(1+x^{-1}y^2)(1+x^{-2}y+2x^{-1}y^2)\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| _ | 00 1 22                  | 1     | $(1+x^{-1}y^2)^2 2x^{-2}y\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5 | 0 <i>000</i> 0           | 3     | $(2xy + 2x^3 + 2y^3 + 2x^2y^2)\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 0 <i>00</i>   <i>0</i> 0 | -3    | $(2xy+x^3+y^3)2xy\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | 0000                     | -3    | $(2xy+x^3+y^3)2xy\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | 00 0 00                  | 3     | $(2xy)^{3}\omega^{34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6 | 0001                     | -8    | $(1+x^{-1}y^2+y^3+x^{-2}y^4)\omega^{3q_+-2}+(xy+2x^{-1}y^2+x^{-2}y^4)\omega^{3q_+-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 0001                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 0001                     | 8     | $[(1+x^{-2}y^{-})\omega^{3q_{\perp}-2}+2x^{-1}y^{2}\omega^{3q_{\perp}-1}]2xy$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | 0001                     | 4.0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 0001                     | 10    | $(1 + xy + 2x^{-1}y^{2})(1 + x^{-1}y^{2})\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   |                          | ••    | (4, -1, 2) 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | 00 01                    | -10   | $(1+x^{-1}y^{-})^{-2}xy\omega^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7 | 0001                     | ø     | (1,1,1) $(1,1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ $(1,2)$ |
|   | 0001                     | -8    | $(xy + x y + 2y)(\omega^{-4} + \omega^{-4})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | 0001                     | 8     | $(1 + r^{-1}y^2) 2r^2y^2 (x^{3}q^{-2} + x^{3}q^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 00 01                    | 0     | $(1 \cdot \mathbf{x} \cdot \mathbf{y}) 2 \mathbf{x} \cdot \mathbf{y} (\mathbf{\omega} \cdot \mathbf{y} + \mathbf{\omega} \cdot \mathbf{z})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | 0/01                     | 10    | $(1 + rv + 2r^{-1}v^2)2rv\omega^{3}q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 0001                     | 10    | $(1 + xy + 2x - y) 2xy \omega \sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 00 01                    | -10   | $(2xy)^2(1+x^{-1}y^2)\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | 00 01                    | 10    | $(2xy)(1+x-y)w^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8 | 0011                     | -16   | $(2xy + y^3 + x^{-2}y^4)\omega^{3q}z^{-2} + (2y^3 + xy + x^{-1}y^2)\omega^{3q}z^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 0011                     | 10    | $(2xy+y+x-y)\omega = +(2y+xy+x-y)\omega =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 00 11                    | 16    | $(1 + x^{-1}v^2) \int (1 + x^{-2}v^4) \omega^{3q_\perp - 2} + 2x^{-1}v^2 \omega^{3q_\perp - 1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 00 11                    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 0011                     | 20    | $(1+x^{-1}y^2)(3xy+x^{-1}y^2)\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 0011                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 0 <u>0</u> 11            | -20   | $(1+x^{-1}y^2)^3\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | 0011                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9 | 0012                     | 8     | $(x^{-1}y^2 + 1 + x^{-3}y^3 + x^{-2}y^4)\omega^{3q_{\perp}-2} + (2x^{-1}y^2 + x^{-2}y + x^{-2}y^4)\omega^{3q_{\perp}-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | 0012                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 00 12                    | -8    | $2x^{-2}y[(1+x^{-2}y^{4})\omega^{3q_{\perp}-2}+2x^{-1}y^{2}\omega^{3q_{\perp}-1}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | 00 12                    |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | 0 <u>0</u> 12            | -10   | $(1+x^{-1}y^2)(1+x^{-2}y+2x^{-1}y^2)\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | 0012                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 0 <u>0</u> 12            | 10    | $(1+x^{-1}y^2)^2 2x^{-2}y\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 00 12                    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Table 3. (continued).

|    | Configuration                                | Count           | Boltzmann weight                                                                      |
|----|----------------------------------------------|-----------------|---------------------------------------------------------------------------------------|
| 10 | 0012                                         | 8               | $(x^{-2}y + x^{-4}y^2 + 2x^{-3}y^3)(\omega^{3q_2-2} + \omega^{3q_2-1})$               |
|    | 0012<br>00 <u>1</u> 2                        | -10             | $2x^{-2}y(1+2x^{-1}y^2+x^{-2}y)\omega^{3q}$                                           |
|    | 0012                                         | -8              | $2x^{-4}y^2(1+x^{-1}y^2)(\omega^{3q_{\perp}-2}+\omega^{3q_{\perp}-1})$                |
|    | 00 12<br>00 12<br>00 12                      | 10              | $(1+x^{-1}y^2)(2x^{-2}y)^2\omega^{3q}$                                                |
| 11 | 0000                                         | 16              | $(2x^2y^2 + x^4y + xy^4)(\omega^{3q2} + \omega^{3q1})$                                |
|    | 00 <u>0</u> 0<br>0 <u>00</u> 0               | -20             | $(2xy+x^3+y^3)2xy\omega^{3q_\perp}$                                                   |
|    | 00 00                                        | -16             | $4x^3y^3(\omega^{3q_1-2}+\omega^{3q_2-1})$                                            |
|    | 00 <u>0</u> 0<br>00 <u>0</u> 0               | 20              | $(2xy)^3\omega^{3q_\perp}$                                                            |
| 12 | 0 <i>0</i> 1<br>0 <i>0</i> 1<br>0 <i>0</i> 1 | -12             | $(1+x^{-3}y^6)\omega^{3q4}+(x^{-1}y^2+x^{-2}y^4)(2\omega^{3q3}+\omega^{3q2})$         |
|    | 0 <i>0</i> 1<br>0 <u>0</u> 1<br>0 <i>0</i> 1 | 32              | $(1+x^{-1}y^2)[(1+x^{-2}y^4)\omega^{3q_{\perp}-2}+2x^{-1}y^2\omega^{3q_{\perp}-1}]$   |
|    | 0 <u>0</u> 1<br>0 <u>0</u> 1<br>001          | $-\frac{62}{3}$ | $(1+x^{-1}y^2)^3\omega^{3q}$                                                          |
| 13 | 012<br>012<br>012                            | 6               | $(x^{-2}y)^{3}(2\omega^{3q_{\perp}-4}+4\omega^{3q_{\perp}-3}+2\omega^{3q_{\perp}-2})$ |
|    | 012<br>0 <u>1</u> 2<br>012                   | -16             | $4x^{-6}y^{3}(\omega^{3q_{\perp}-2}+\omega^{3q_{\perp}-1})$                           |
|    | 0 <u>1</u> 2<br>0 <u>1</u> 2<br>012          | $-\frac{31}{3}$ | $(2x^{-2}y)^3\omega^{3q_\perp}$                                                       |
| 14 | 0 <i>0</i> 0<br>0 <i>0</i> 0<br>0 <i>0</i> 0 | 6               | $(2\omega^{3q_{\perp}-4}+4\omega^{3q_{\perp}-3}+2\omega^{3q_{\perp}-2})(xy)^{3}$      |
|    | 0 <i>0</i> 0<br>0 <u>0</u> 0<br>0 <i>0</i> 0 | -16             | $4x^{3}y^{3}(\omega^{3q_{-}-2}+\omega^{3q_{\perp}-1})$                                |
|    | 0 <u>0</u> 0<br>0 <u>0</u> 0<br>0 <i>0</i> 0 | $\frac{31}{3}$  | $(2xy)^3\omega^{3q}$                                                                  |

(b) Third-order contribution to  $F_2 - F_{\infty}$ .

|   | Configuration  | Count | Boltzmann weight                                  |
|---|----------------|-------|---------------------------------------------------|
| 1 | 0 <i>000</i> 1 | -2    | $(1+3xy+3x^{-1}y^2+y^3)\omega^{3q}$               |
|   | 00 001         | 2     | $(1+xy+2x^{-1}y^2)2xy\omega^{3q}$                 |
|   | 000 01         | 2     | $(1+x^{-1}y)(2xy+x^3+y^3)\omega^{3q}$             |
|   | 00 0 01        | -2    | $(2xy)^2(1+x^{-1}y^2)\omega^{3q}$                 |
| 2 | 0 <i>001</i> 1 | -2    | $(4xy + x^3 + 2y^3 + x^{-1}y^2)\omega^{3q}$       |
|   | 00 011         | 2     | $(3xy + x^{-1}y^2)2xy\omega^{3q_{\perp}}$         |
|   | 000 11         | 2     | $(1 + xy + 2x^{-1}y^2)(1 + x^{-1}y^2)\omega^{3q}$ |
|   | 00011          | -2    | $(1+x^{-1}y^2)^2 2xy\omega^{3q_\perp}$            |

|   | Configuration           | Count | Boltzmann weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---|-------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | 00112                   | 2     | $(1+xy+5x^{-1}y^2+yx^{-2})\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | 00 112                  | -2    | $(3x^{-2}y + x^{-1}y^2)(1 + x^{-1}y^2)\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | 001   12                | -2    | $(3xy + x^{-1}y^2)(1 + x^{-1}y^2)\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | 00 1 12                 | 2     | $(1+x^{-1}y^2)^3\omega^{3q_\perp}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4 | 0 <i>000</i> 0          | 2     | $(2xy + 2x^3 + 2y^3 + 2x^2y^2)\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 0000                    | -2    | $(2xy+x^3+y^3)2xy\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | 0 <i>000</i>  0         | -2    | $(2xy + x^3 + y^3)2xy\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | 00 0 00                 | 2     | $(2xy)^3\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5 | 0 <i>0</i> 01           | -8    | $(xy + x^2y^2 + 2y^3)(\omega^{3q_1-2} + \omega^{3q_2-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 0 <i>00</i> 1           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 0001                    | 8     | $(1+x^{-1}y^2)2x^2y^2(\omega^{3q}-+\omega^{3q}-1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | 00 01                   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 0 <u>0</u> 01           | 10    | $(1+xy+2x^{-1}y^2)2xy\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | 0 <i>00</i> 1           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 0 <u>0</u> 01           | -10   | $(2xy)^2(1+x^{-1}y^2)\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | 00 01                   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6 | 00 <i>0</i> 1           | -8    | $(1+x^{-1}y^2+y^3+x^{-2}y^4)\omega^{3q_{-}-2}+(xy+2x^{-1}y^2+x^{-2}y^4)\omega^{3q_{-}-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 0 <i>00</i> 1           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 00 01                   | 8     | $[(1+x^{-2}y^{4})\omega^{3q_{\perp}-2}+2x^{-1}y^{2}\omega^{3q_{\perp}-1}]2xy$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | 00 01                   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 00 <u>0</u> 1           | 10    | $(1 + xy + 2x^{-1}y^2)(1 + x^{-1}y^2)\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | 0001                    |       | (r1.2)2r. 3r.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | 00 <u>0</u> 1           | -10   | $(1+x^{-1}y^2)^2 2xy\omega^{3q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ~ | 0 <i>0</i>   <i>0</i> 1 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7 | 0/12                    | 8     | $(x^{-3}y^{3} + x^{-2}y^{4} + 2x^{-2}y)\omega^{3q_{\perp}-2} + (x^{-2}y + x^{-1}y^{2} + 2x^{-3}y^{3})\omega^{3q_{\perp}-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | 0112                    | 0     | $(a_1, -1, 2)$ $((a_2, -2, 4), 3a_1 - 2, a_2 - 1, 2, 3a_1 - 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 01 12                   | -8    | $(1 + x^{-1}y^{-1})((1 + x^{-1}y^{-1})\omega^{-4}z^{-1} + 2x^{-1}y^{-1}\omega^{-4}z^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 0112                    | 10    | (2 - 2) + (1 - 1) + (2) + (1 - 1) + (2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3 - 2) + (3   |
|   | 0112                    | -10   | $(3x^{-y} + x^{-y})(1 + x^{-y})\omega^{-y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | 0112                    | 10    | $(1 + n^{-1} + 2)3 + 3a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 01/12                   | 10    | $(1+x y) \omega^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0 | 01/12                   | 0     | $(2 + 2)^2 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 + 2)^4 + (2 +$ |
| 0 | 0000                    | 0     | $(2x y + x y + xy)(\omega^{-1} + \omega^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 0000                    | _9    | A = 3 = 3 = 3 = -2 = -3 = -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | 00 00                   | -0    | $4x y (\omega^{-1} + \omega^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | 0000                    | -10   | $(2ry + r^3 + y^3) 2ry(^3q)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | 0000                    | -10   | $(2xy + x + y) / 2xy \omega^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | 00.00                   | 10    | $(2rv)^{3}\omega^{3}q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | 00 00                   | 10    | (20) .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Table 3. (continued).

(c) Third-order contributions to  $F_3 - F_{\infty}$ .

|   | Configuration  | Count | Boltzmann weight                                    |
|---|----------------|-------|-----------------------------------------------------|
| 1 | 0 <i>000</i> 1 | -2    | $(1+3xy+3x^{-1}y^2+y^3)\omega^{3q}$                 |
|   | 00 001         | 2     | $(1 + xy + 2x^{-1}y^2)2xy\omega^{3q_{\perp}}$       |
|   | 000 01         | 2     | $(1+x^{-1}y)(2xy+x^3+y^3)\omega^{3q}$               |
|   | 0000           | -2    | $(2xy)^2(1+x^{-1}y^2)\omega^{3q_\perp}$             |
| 2 | 01112          | 1     | $(4x^{-2}y + 4x^{-1}y^2)\omega^{3q_{\perp}}$        |
|   | 011 12         | -1    | $(1+x^{-1}y^2)(1+xy+2x^{-1}y^2)\omega^{3q}$         |
|   | 01 112         | -1    | $(1+x^{-1}y^2)(1+xy+2x^{-1}y^2)\omega^{3q_{\perp}}$ |
|   | 01 1 12        | 1     | $2xy(1+x^{-1}y^2)^2\omega^{3q_\perp}$               |
| 3 | 0 <i>000</i> 0 | 1     | $(2xy+2x^3+2y^3+2x^2y^2)\omega^{3q_\perp}$          |
|   | 000 00         | -1    | $(2xy + x^3 + y^3) 2xy\omega^{3q}$                  |
|   | 00 000         | -1    | $(2xy + x^3 + y^3) 2xy\omega^{3q_\perp}$            |
|   | 00 0 00        | 1     | $(2xy)^3\omega^{3q}$                                |

3174

Yeomans and Fisher (1984). This allows the chain of flipped spins to be built up step by step with the appropriate Boltzmann factor for a connected or disconnected spin being included at each stage. Details of the method are given in appendix 1 of this paper.

Using (9) and (10) in the matrix products, we find that there is, in fact, a zero contribution to order n, but to order n+1,

$$(F_n^{(n)} - F_\infty^{(n)})' = -(1+n)3Ks(1-x^3)^n \omega^{nq}$$
<sup>(17)</sup>

where ' indicates that we are only considering a subset of the contributions to the free energy difference because new graphs will also be important to order n+1. These are axially connected chains of length n with a single protruding spin on the side, as shown in figure 2(b). These graphs, together with their decompositions, are shown for  $F_2 - F_{\infty}$  at third order in table 3(b). The leading-order contributions from them may be calculated using an extended version of the transfer matrix which is described in appendix 2. One obtains, putting  $y = x^2$ ,

$$(F_n^{(n+1)} - F_\infty^{(n+1)})' = n(1 - x^3)^{n+1}(4 - 5\omega)\omega^{(n+1)q_\perp - 1}.$$
(18)

Summing (17) and (18) gives

$$F_n - F_{\infty} = -3Ks(1+n)(1-x^3)^n \omega^{nq_{\perp}} + n(1-x^3)^{n+1}(4-5\omega)\omega^{(n+1)q_{\perp}-1} + O(\omega^{(n+2)q_{\perp}-3}).$$
(19)

The correction term in (19) (and indeed in (14), (15) and (16)) deserves some comment as one would naively expect it to be  $\omega^{(n+2)q_{\perp}-4}$  and  $\omega^{(n+3)q_{\perp}-8}$  due to corrections from graphs such as those shown in figure 2(c) and 2(d) where the protruding spins flip to the same state as their neighbours. It is, however, shown in appendix 3 that these give zero contribution.

We now build up the phase diagram to general order by an inductive argument. Consider the point at which the phase (n-1) has just become stable. From (19) one finds the phase boundary between (n-1) and  $\infty$  to be

$$3Ks_{n-1:\infty} = (1-x^3) \left(\frac{n-1}{n}\right) (4-5\omega) \omega^{q_{\perp}-1} + \mathcal{O}(\omega^{2q_{\perp}-3}).$$
(20)

The *n*th phase is stable if  $F_n - F_\infty$  is positive along the  $n-1:\infty$  boundary. Putting  $s = s_{n-1:\infty}$ ,  $F_n - F_\infty$  is given by

$$F_n - F_{\infty} = \frac{(1 - x^3)^{n+1}}{n} \omega^{(n+1)q_{\perp} - 1} + \mathcal{O}(\omega^{(n+2)q_{\perp} - 3}).$$
(21)

This is positive, so therefore the nth phase is stable, and we go on to build up a sequence of layering transitions. The width of the nth phase is given by

$$3Ks_{n:n+1} - 3Ks_{n-1:n} = \frac{(1-x^3)}{n(n+1)} (4-5\omega)\omega^{q_{\perp}-1} + O(\omega^{2q_{\perp}-3})$$
(22)

which is a rapidly decreasing function of n. Note that it would not be valid to deduce that there are an infinite number of layering transitions, as the correction terms may become important when  $n^{-1} \sim O(\omega)$  and the sequence may terminate at some finite n.

### 4. Conclusion

We have shown that a low temperature series for the three-dimensional three-state chiral clock model predicts wetting proceeds via a series of layering transitions. A similar phenomenon was first predicted by de Oliveira and Griffiths (1978) who used mean-field theory to show that an interface unbinds from a surface through a series of first-order transitions as the bulk field tends to zero. More recently Duxbury and Yeomans (1985) demonstrated that these results could be reproduced using low temperature series and that, for the Abraham (1980) model, where the interface is bound by a row of weak bonds at the surface, at least two layering transitions occur.

At higher temperatures we expect the wetting transition to be continuous as, above the roughening temperature, it is not possible to distinguish between different layers. This is indeed the situation found by Huse *et al* (1983) for the two-dimensional chiral clock model. We also note that, although the two-dimensional wetting line of Huse *et al* (1983) curves to smaller  $\Delta$  as the temperature is increased, the three-dimensional results indicate a curve to larger  $\Delta$ . This is because of the role of roughening in two dimensions: the interfaces try to perform infinite fluctuations about their mean positions and hence repel each other. In three dimensions, at low temperatures, however, the interfaces are not rough and fluctuations are not so large. The lowest-order contribution to the free energy (and indeed the mechanism for the multilayer adsorption) is from correlated fluctuations. Hence there is an effective attraction of the interfaces near  $\Delta = \frac{1}{4}$ .

We are at present studying wetting in the chiral clock model using a mean-field theory. The mean-field results, which will be presented elsewhere, show a first-order transition to n = 1, followed by a transition to  $n = \infty$ .

#### Acknowledgments

The support of the SERC, in the form of a Research Studentship, is gratefully acknowledged by KA. We also thank M E Fisher for useful and interesting conversations.

## Appendices. The matrix method

In these appendices we explain how to calculate the diagrams which contribute to the interface free energy to leading order. We first consider axially connected chains and then chains with a single kink or bump as shown in figures 2(a) and 2(b) respectively. We then show that configurations corresponding to a double kink or bump (figure 2(c)) give zero contribution  $O(\omega^{(n+2)q_{\perp}-4})$ .

## Appendix 1. Axial chains of length n

#### A1.1. Middle matrices

The transfer matrix method for calculating the Boltzmann factor associated with chains of length n has been described in Yeomans and Fisher (1984). We therefore limit ourselves to a brief outline of the method and a list of the transfer matrices appropriate to the problem in hand. The idea is to use a transfer matrix to record the Boltzmann factors as a line of flipped spins is sequentially built up. Consider, for example, adding the bond between two spins, a and b, in state 0. Each spin may flip to two possible states, 1 and 2, and the corresponding Boltzmann factors may be recorded in matrix form:

$$\mathbf{M}' = \operatorname{spin} a \, \frac{1}{2} \begin{bmatrix} 1 & x \\ y & 1 \end{bmatrix} \omega^{q_{\perp}}.$$
(A1.1)

There is also the possibility of spins a and b being disconnected. This involves a negative contribution to the weights (Yeomans and Fisher 1984)

$$\mathbf{M}'' = \operatorname{spin} a \frac{1}{2} \begin{bmatrix} -xy & -y^2 \\ -x^2 & -xy \end{bmatrix} \omega^{q_{\perp}}$$
(A1.2)

where, for example, xy which appears in the top left-hand corner of the matrix is the product of the Boltzmann factors associated with  $0-0 \rightarrow 0-1$  and  $0-0 \rightarrow 1-0$ .

Hence the total contribution of a 0-0 bond is

$$\mathbf{M} = \mathbf{M}' + \mathbf{M}'' = \frac{1}{2} \begin{bmatrix} 1 & 2 \\ 1 - xy & x - y^2 \\ y - x^2 & 1 - xy \end{bmatrix} \omega^{q_\perp}.$$
 (A1.3)

We shall also need the matrix that adds a 0-1 bond:

$$\mathbf{N} = \frac{1}{2} \begin{bmatrix} 1 - x^{-2}y & x^{-1}y - x^{-2} \\ x^{-1} - x^{-2}y^2 & 1 - x^{-2}y \end{bmatrix} \omega^{q_{\perp}}.$$
 (A1.4)

## A1.2. Initial vectors

The initial bond in a chain is added by a row vector. The configurations we shall require are 1 2

$$\underline{0-0} \qquad \boldsymbol{M}_{i} = \boldsymbol{0} [\boldsymbol{x} \qquad \boldsymbol{y}] \boldsymbol{\omega}^{\boldsymbol{q}_{\perp}}$$
(A1.5)

$$\underbrace{\begin{array}{cccc}
 2 & 0 \\
 \underline{0-1} & N_{i} = 0[x^{-1}y & x^{-1}]\omega^{q_{\perp}}.
 \end{array}$$
(A1.6)

# A1.3. Final vectors

Similarly the final spin is added by a column vector. (A factor  $\omega^{q_{\perp}}$  is not now necessary as no in-layer bond is added.)

$$\frac{0-0}{M_{\rm f}} = \frac{1}{2} \begin{bmatrix} y \\ x \end{bmatrix} \qquad N_{\rm f} = \frac{1}{2} \begin{bmatrix} x^{-1} \\ x^{-1}y \end{bmatrix}.$$
(A1.7)

#### A1.4. Matrix products

We expect the leading contributions to the difference in free energies to be associated with axial chains of length n which connect the two interfaces. The total Boltzmann factor for such chains of spins may now be calculated by forming products of the matrices listed above. As explained in the text the spin chains which contribute to  $F_n - F_{\infty}$  in *n*th order, together with their corresponding matrix products, are

| <b>Configuration</b> | <u>Count</u> | Matrix product                    |          |
|----------------------|--------------|-----------------------------------|----------|
| (the italics contain |              |                                   |          |
| n spins)             |              |                                   |          |
| 01111112             | 1            | $N_{ m i} {\sf M}^{n-1} N_{ m f}$ |          |
| 0 <i>000000</i> 1    | -1           | $M_{ m i} {\sf M}^{n-1} N_{ m f}$ | ( 1 1 0) |
| 01111111             | -1           | $N_{ m i} {\sf M}^{n-1} M_{ m f}$ | (AI.8)   |
| 0 <i>000000</i> 0    | 1            | $M_{i}M^{n-1}M_{f}$ .             |          |
|                      |              |                                   |          |

Hence

$$F'_{n} - F'_{\infty} = (N_{\rm i} - M_{\rm i})({\sf M}^{n-1})(N_{\rm f} - M_{\rm f}).$$
(A1.9)

Performing the products, summing over the appropriate counts and using (9) and (10) gives

$$F'_n - F'_{\infty} = \alpha \log x (1+n)(1-x^3)^n \omega^{nq_-} + \mathcal{O}(\omega^{(n+2)q_\perp - 2}).$$
(A1.10)

Hence the  $O(\omega^{nq_{-}})$  contribution to  $F_n - F_{\infty}$  is zero, and the leading-order term in the free energy difference will be  $\sim \alpha (\log x) \omega^{nq_{\perp}} \sim \omega^{(n+1)q_{\perp}-1}$ . The prime on the free energies is used to indicate that we must include other contributions at this order.

#### A1.5. Axial chains of length n+1

Because the leading-order term in the free energy difference is  $O(\omega^{(n+1)q_{\perp}-1})$  we must also consider contributions from axial chains of length n+1. Those which contribute to the free energy difference (see, for example, table 3(b)) are

| Configuration        | Count | Matrix product                                         |                  |
|----------------------|-------|--------------------------------------------------------|------------------|
| (the italics contain |       |                                                        |                  |
| n+1 spins)           |       |                                                        |                  |
| 0 <i>000000</i> 1    | -2    | $M_{ m i} M^n N_{ m f}$                                |                  |
| 0 <i>000001</i> 1    | -2    | $M_{ m i} {\sf M}^{n-1} {\sf N} M_{ m f}$              | ( <b>A</b> 1 11) |
| 01111122             | 2     | $N_{ m i} {\sf M}^{n-1} {\sf N} {oldsymbol{M}_{ m f}}$ | (AI.II)          |
| 0 <i>000000</i> 0    | 2     | $M_{i}M^{n}M_{f}$ .                                    |                  |

Summing the matrix products and specialising to  $y = x^2$  to obtain the leading order gives

$$F'_{n} - F'_{\infty} = 0 + \mathcal{O}(\omega^{(n+2)q_{-}-1}).$$
(A1.12)

Therefore axial chains of length (n+1) do not contribute in leading order. However, we must consider other contributions.

## Appendix 2. Axial chains with a single kink or bump

We now show how to calculate the configurations shown in figure 2(b) which also contribute to  $F_n - F_\infty$  at order n+1. The easiest way to deal with these seems to be to consider sparse  $8 \times 8$  matrices which add the Boltzmann factors of the bonds between two adjacent spins in each of two consecutive layers, together with the in-layer bonds in the right-hand layer. Note that the matrices will only give the correct *leading-order* term when multiplied together.

# A2.1. Middle matrices

We consider, as an example, the matrix which connects two zero layers

|     | ,   |                                                      |           | ×<br>( <sup>4</sup> )                                             | $(\mathbf{w}^{q_1}) = \mathbf{w}^{q_1}.  (\mathbf{A2}).$   |            |              |                 |                             |
|-----|-----|------------------------------------------------------|-----------|-------------------------------------------------------------------|------------------------------------------------------------|------------|--------------|-----------------|-----------------------------|
|     | 2   | 0                                                    | 0         | $(xy - y^3)$<br>$(4\omega^{q_1-2} - 5(y_1 - y_2))$                | $(y - xy^2)$<br>$(4\omega^{q_1-2} - 5e^{-1})$              | 0          | 0            | 0               | 0                           |
|     | - 2 | 0                                                    | 0         | $(x^2 - xy^2) \times (4\omega^{q_\perp - 1} - 5\omega^{q_\perp})$ | $\frac{(x-x^2y)\times}{(4\omega^{q_1}-1-5\omega^{q_1})}$   | 0          | 0            | 0               | 0                           |
|     | 1 2 | 0                                                    | 0         | $(y-xy^2) \times (4\omega^{q_{\perp}-1}-5\omega^{q_{\perp}})$     | $(y^2 - x^2 y) \times (4\omega^{q_1 - 1} - 5\omega^{q_1})$ | 0          | 0            | 0               | 0                           |
|     |     | 0                                                    | 0         | $(x-x^2y) \times (4\omega^{q_1-2}-5\omega^{q_1})$                 | $(yx - x^3) \times (4\omega^{q_1-2} - 5\omega^{q_1})$      | 0          | 0            | 0               | 0                           |
|     | 0   | 0                                                    | 0         | $(x - y^2)$                                                       | (1 - xy)                                                   | $(xy-y^3)$ | $(x^2-xy^2)$ | $(y-xy^2)$      | $(x-x^2y)$                  |
|     | 0 - | 0                                                    | 0         | (1-xy)                                                            | $(y - x^2)$                                                | $(y-xy^2)$ | $(x-x^2y)$   | $(y^2 - x^2 y)$ | $(xy-x^3)$                  |
| 0-0 | 0   | $(x - y^2)$                                          | (1 - xy)  | 0                                                                 | 0                                                          | $(xy-y^3)$ | $(y-xy^2)$   | $(x^2-xy^2)$    | $(x-x^2y)$                  |
|     | - 0 | $\left[ \begin{array}{c} (1-xy) \end{array} \right]$ | $(y-x^2)$ | 0                                                                 | 0                                                          | $(y-xy^2)$ | $(y^2-x^2y)$ | $(x-x^2y)$      | $\left[ (xy - x^3) \right]$ |

To construct the matrix note the following.

(i) The labelling of the rows and columns follows because each spin can flip to state 1 or 2 or remain in its original state. At least one of the two spins must flip, however; hence we need not consider  $\frac{0}{0}$ .

(ii) Our aim is to build up the configurations shown in figure 2(b) and variants where the kink or bump moves along the chain or the diagram is rotated about the axial direction. (The linear configurations, considered separately in appendix 1, are also included in this formalism.) We always take the first spin to lie on the lowest line of the pair considered (in terms of how the matrix is labelled) to avoid overcounting. It is then immediately apparent that

(a) the configurations in the bottom right-hand corner of the matrix are not allowed as they contribute in higher order;

(b) zero configurations in the top left-hand corner are disallowed because they correspond to disconnected spin chains, and

(c) the top two rows on the right-hand side of the matrix must correspond to zero entries as configurations such as  $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$  would introduce a second kink into the chain and hence be of higher order.

(iii) We now consider the non-zero portions of the matrix.

(a) The two  $2 \times 2$  filled blocks in the top left-hand quadrant of the matrix correspond to adding a single axially connected or disconnected spin. They are therefore the same as (A1.3) in appendix 1.

(b) The bottom left-hand quadrant also corresponds to adding a single connected or disconnected spin. Hence the Boltzmann factor of the bond to the flipped spin neighbouring an unflipped spin must also be considered.

(c) The non-zero terms on the right-hand side of the matrix are of a more complicated form because two spins are added and three disconnected configurations must be taken into account. Consider the  $_{1}^{0}$   $_{1}^{1}$  term. This, when connected, corresponds to a factor  $4x\omega^{2q_{\perp}-2}$ , the x from the 0-1 bond on the top row (and the 1-1 bond on the bottom row which gives a factor 1), and the  $\omega^{2q_{\perp}-2}$  from the in-layer contribution. The factor of four appears to count the possible rotations of this configuration around the axial direction. If there is a disconnection between the two spins on the bottom row one obtains  $-4x^2y\omega^{2q_{\perp}-2}$ . Taking the disconnection to lie between the two bonds in the same layer gives  $-5x\omega^{2q_{\perp}}$ . Note the factor five, not four; this occurs because there are five forbidden positions for the disconnected spin. Finally, if both disconnections are present one must add a term  $5x^2y\omega^{2q_{\perp}}$ .

The other  $8 \times 8$  matrix (see opposite page) which we shall need adds two spins in state 1 to two in state 0. This, by similar reasoning, is given by

| $ \begin{bmatrix} 0 - 1 \\ 1 & 1 & 2 & 0 \\ (1 - x^{-1}y) & (x^{-1}y - x^{-1}) & 0 & 0 & 0 & 0 \\ (x^{-1} - x^{-2}y^2) & (1 - x^{-1}y) & (x^{-1}y - x^{-1}) & 0 & 0 & 0 & 0 \\ (x^{-1} - x^{-2}y^2) & (1 - x^{-2}y) & 0 & 0 & 0 & 0 & 0 & 0 \\ (x^{-1} - x^{-2}y^2) & (1 - x^{-2}y) & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                      |                        |                                                                                                   | ( <b>A</b> 2.2)                                        |                      |                         |                         |                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------|------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------|-------------------------|-------------------------|----------------------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                      |                        |                                                                                                   | т <sub>в</sub> (1)                                     |                      |                         |                         |                                        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0          | 0                    | 0                      | $(x^{-2}y - x^{-3}) \times$<br>$(4\omega^{q_1-2} - 5\omega^{q_1})$<br>$(x^{-1} - x^{-3}v) \times$ | $(4\omega^{q_1-2}-5\omega^{q_1})$                      | 0                    | 0                       | 0                       | 0                                      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0            | 0                    | 0                      | $(x^{-2}y^2 - x^{-3}y) \times (4\omega^{q_1-1} - 5\omega^{q_1})$                                  | $(4\omega^{q_1}-1-5\omega^{q_1})$                      | 0                    | 0                       | 0                       | 0                                      |
| $\begin{bmatrix} 0 - 1 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \\ (1 - x^{-2}y) & (x^{-1}y - x^{-2}) & 0 & 0 \\ (x^{-1} - x^{-2}y^{2}) & (1 - x^{-2}y) & 0 & 0 \\ (x^{-1} - x^{-2}y^{2}) & (1 - x^{-2}y) & 0 & 0 \\ (x^{-1} - x^{-2}y^{2}) & (1 - x^{-2}y) & 0 & 0 \\ 0 & 0 & (1 - x^{-3}y) & (x^{-1}y - x^{-2}) & (x^{-1}y - x^{-3}y^{2}) \times \\ 0 & 0 & (x^{-1} - x^{-3}y) & (x^{-1}y - x^{-3}y) & (x^{-2}y - x^{-3}y^{3}) \times \\ (x^{-1} - x^{-3}y) & (x^{-2}y - x^{-3}) & (x^{-1} - x^{-3}y) & (x^{-2}y - x^{-3}y) \\ (x^{-1} - x^{-3}y^{2}) & (x^{-1} - x^{-3}y) & (x^{-1} - x^{-3}y^{2}) & (x^{-2}y - x^{-3}y) \\ (x^{-1}y - x^{-3}y^{2}) & (x^{-1} - x^{-3}y) & (x^{-1} - x^{-3}y^{2}) & (x^{-1} - x^{-3}y) & 0 \\ (x^{-1}y - x^{-3}y^{2}) & (x^{-1} - x^{-3}y) & (x^{-1} - x^{-3}y^{2}) & (x^{-1} - x^{-3}y) & 0 \\ (x^{-1}y - x^{-3}y^{2}) & (x^{-1} - x^{-3}y) & (x^{-1} - x^{-3}y^{2}) & (x^{-1} - x^{-3}y) & 0 \\ (x^{-1}y - x^{-3}y^{2}) & (x^{-1} - x^{-3}y) & (x^{-1} - x^{-3}y^{2}) & (x^{-1} - x^{-3}y) & 0 \\ (x^{-1}y - x^{-3}y^{2}) & (x^{-1} - x^{-3}y) & (x^{-1} - x^{-3}y^{2}) & (x^{-1} - x^{-3}y) & 0 \\ (x^{-1}y - x^{-3}y^{2}) & (x^{-1} - x^{-3}y) & (x^{-1} - x^{-3}y^{2}) & (x^{-1} - x^{-3}y) & 0 \\ (x^{-1}y - x^{-3}y^{2}) & (x^{-1} - x^{-3}y^{2}) & (x^{-1} - x^{-3}y^{2}) & (x^{-1} - x^{-3}y) & 0 \\ (x^{-1}y - x^{-3}y^{3}) & (x^{-1} - x^{-3}y^{2}) & (x^{-1} - x^{-3}y^{2}) & (x^{-1} - x^{-3}y^{2}) & 0 \\ \end{bmatrix}$ | 0            | 0                    | 0                      | $(x^{-1} - x^{-3}y) \times (4\omega^{q_1-1} - 5\omega^{q_1})$                                     | $(4\omega^{q_1}-1-5\omega^{q_1})$                      | 0                    | 0                       | 0                       | 0                                      |
| $ \begin{bmatrix} 0 & -1 \\ 1 & 1 & 2 \\ (1 - x^{-2}y) & (x^{-1}y - x^{-2}) & 0 \\ (x^{-1} - x^{-2}y^{2}) & (1 - x^{-2}y) & 0 & 0 \\ (x^{-1} - x^{-2}y^{2}) & (1 - x^{-2}y) & 0 & 0 \\ (x^{-1} - x^{-3}y) & (1 - x^{-2}y) & 0 & 0 \\ 0 & 0 & (1 - x^{-3}y) & (x^{-1}y - x^{-3}y) \\ (x^{-1} - x^{-3}y^{2}) & (x^{-1} - x^{-3}y) & (x^{-1} - x^{-3}y) \\ (x^{-1} - x^{-3}y^{2}) & (x^{-1} - x^{-3}y) & (x^{-1} - x^{-3}y^{2}) & (x^{-2}y^{-2} - x^{-3}y) \\ (x^{-1}y - x^{-3}y^{2}) & (x^{-1}y - x^{-3}y) & (x^{-2} - x^{-3}y^{2}) & (x^{-1} - x^{-3}y^{2}) \\ (x^{-1}y - x^{-3}y^{2}) & (x^{-1}y - x^{-3}y) & (x^{-2} - x^{-3}y^{2}) & (x^{-1} - x^{-3}y^{2}) \\ (x^{-2}y - x^{-3}y^{3}) & (x^{-1}y - x^{-3}y^{2}) & (x^{-2}y - x^{-3}y^{3}) & (x^{-1}y - x^{-3}y^{2}) \\ \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 7          | 0                    | 0                      | $(x^{-1}y - x^{-3}y^2) \times (4\omega^{q_1-2} - 5\omega^{q_1})$                                  | $(x y - x y) \times (4\omega^{q_1-2} - 5\omega^{q_1})$ | 0                    | 0                       | 0                       | 0                                      |
| $\begin{bmatrix} 0-1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix} = \begin{bmatrix} 0\\ -1\\ 1\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 0          | 0                    | 0                      | $(x^{-1}y - x^{-2})$                                                                              | $(1-x^{-2}y)$                                          | $(x^{-2}y - x^{-3})$ | $(x^{-2}y^2 - x^{-3}y)$ | $(x^{-1} - x^{-3}y)$    | $(x^{-1}y - x^{-3}y^2)$                |
| $\begin{bmatrix} 0 & -1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -1 & 1 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} (1 - x^{-2}y) & (x^{-1}y - x^{-2}) \\ (x^{-1} - x^{-2}y^{2}) & (1 - x^{-2}y) \end{bmatrix}$ $\begin{bmatrix} x^{-1} - x^{-3}y & 0 & 0 \\ (x^{-1} - x^{-3}y^{2}) & (x^{-2}y - x^{-3}y) \\ (x^{-1}y - x^{-3}y^{2}) & (x^{-1}y - x^{-3}y^{2}) \\ (x^{-1}y - x^{-3}y^{2}) & (x^{-1}y - x^{-3}y^{2}) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 - 7        | 0                    | 0                      | $(1-x^{-2}y)$                                                                                     | $(x^{-1} - x^{-2}y^2)$                                 | $(x^{-1} - x^{-3}y)$ | $(x^{-1}y - x^{-3}y^2)$ | $(x^{-2} - x^{-3}y^2)$  | $(x^{-2}y - x^{-3}y^3)$                |
| $ \begin{array}{c} 0 \\ 2 \\ 1 \\ (1 - x^{-2}y) \\ (x^{-1} - x^{-2}y^{2}) \\ (x^{-1} - x^{-3}y^{2}) \\ (x^{-2} - x^{-3}y^{2}) \\ (x^{-2} - x^{-3}y^{3}) \\ (x^{-2}y - x^{-3}y^{3}) \\ (x^{-2}y - x^{-3}y^{3}) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0            | $(x^{-1}y - x^{-2})$ | $(1-x^{-2}y)$          | 0                                                                                                 | 0                                                      | $(x^{-2}y - x^{-3})$ | $(x^{-1} - x^{-3}y)$    | $(x^{-2}y^2 - x^{-3}y)$ | $(x^{-1}y - x^{-3}y^2)$                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0-<br>2<br>1 | $\int (1-x^{-2}y)$   | $(x^{-1} - x^{-2}y^2)$ | 0<br>•                                                                                            | 0                                                      | $(x^{-1}-x^{-3}y)$   | $(x^{-2} - x^{-3}y^2)$  | $(x^{-1}y - x^{-3}y^2)$ | $\left[ (x^{-2}y - x^{-3}y^3) \right]$ |

## A2.2. Initial vectors

The initial two spins in a given chain are added by the row vectors

The first two entries are zero because we fix the first flipped spin to be the bottom spin and the second two should be compared to (A1.5) and (A1.6). The other terms allow for both spins in the first layer to be flipped and for the possibility of their being disconnected. The factor of two appears because the matrix product counts the diagrams  $\begin{array}{c} \hline \end{array}$  and  $\begin{array}{c} \hline \end{array}$  as distinct when this is not the case.

## A2.3. Final vectors

The column vectors which add the bonds to the right of the final flipped spins are

0 - 00 - 10 - 10--0 v х  $x^{-}$ y (A2.5) х  $v^2$ x xyxy $x^2$ 

# 

#### A2.4. Matrix products

To calculate the (n+1)th order contribution to  $F_n - F_\infty$  we should now use the full matrices which allow for single kinks and bumps on axial chains of length *n*. The configurations we need consider are exactly those shown in (A1.8) and indeed the results (A1.10) and (A1.12) also follow from using the  $8 \times 8$  matrices. It is, however, easier to treat the linear chains separately using the smaller matrices as the full dependence on x and y is important, and to put  $y = x^2$  in the general case so that only the 'kink and bump' terms survive. If this is done the matrix products simplify considerably and can be performed explicitly to give

$$F'_{n} - F'_{\infty} = -3Ks(1+n) \times (1-x^{3})^{n} \omega^{nq_{\perp}} + n(1-x^{3})^{n+1}(4-5\omega)\omega^{(n+1)q_{\perp}-1} + O(\omega^{(n+1)q_{\perp}-3}).$$
(A2.6)

#### Appendix 3. Axial chains with two kinks or bumps

As we are considering a cubic lattice we must also count graphs with (n+2) spin flips which can contribute in order  $\omega^{(n+2)q_{\perp}-4} \sim \omega^{(n+1)q_{\perp}}$ . Such terms are generated by connected or disconnected axial chains of length *n*, with two kinks or bumps as shown in figure 2(*c*), if all the overturned spins within a given layer flip to the same state. In-layer disconnections need not be considered. Moreover,  $\omega^{(n+3)q_{\perp}-8}$  terms, which are also of this order, appear from graphs like that depicted in figure 2(*d*) if the square of spins all flip to the same state.

In this appendix we show the contribution from these graphs is zero to leading order. This occurs for the same reason as the vanishing of the contribution from axial chains of length n and n+1 (see (A1.10) and (A1.12)) to order n and n+1 respectively. We first demonstrate why this happens, showing that in fact the matrix product is zero, not only when all possible spin flips are taken into account, but also term by term for each flipped configuration:

$$(n_1 \rightarrow n_1 + \alpha_1, n_2 \rightarrow n_2 + \alpha_2, \dots, n_n \rightarrow n_n + \alpha_n)$$
  $\alpha_i = \pm 1$   $i = 1, 2, \dots, n_n$ 

when the sum over the four contributing graphs (A1.8) or (A1.11) is taken. Writing out (A1.9) explicitly for  $y = x^2$ :

$$F'_{n} - F'_{\infty} = [0, x^{-1} - x](1 - x^{3})^{n-1} \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}^{n} \begin{bmatrix} x^{-1} - x^{2} \\ 0 \end{bmatrix} \omega^{nq}.$$
 (A3.1)

It is immediately apparent that if  $\alpha_1 = 1$ ,  $F'_n - F'_\infty = 0$  because the first term in the initial row matrix is zero. If  $\alpha_1 = 2$  and  $\alpha_2 = 1$ , the difference is zero because the matrix has a zero term in the bottom left-hand corner. Similarly if  $\alpha_1 = 2$ ,  $\alpha_2 = 2$ ,  $\alpha_3 = 1$ , and so on, until for  $\alpha_i = 2$  for all *i* the product must be zero because the bottom term in the column vector is zero. Note that this argument hinges on the zero in the middle matrix which only occurs because both connected and disconnected configurations give the same Boltzmann factors.

We now turn to the case of axial chains with several kinks or bumps. The contribution from any particular diagram may still be written as a product of  $2 \times 2$  matrices, if  $M_0$  is replaced by a new matrix whenever there is a kink or bump to allow for the additional spins in the layers. For example, the matrix which adds a layer

which includes a kink in the same state is

$$\underbrace{\begin{array}{ccc}
0 & 1 & 2 \\
\underline{0-0} & 1 \begin{bmatrix} (4x-4x^2y)\omega^{2q_{\perp}-2} & (4xy-4y^3)\omega^{2q_{\perp}-2} \\
2 \begin{bmatrix} (4xy-4x^3)\omega^{2q_{\perp}-2} & (4y-4xy)\omega^{2q_{\perp}-2} \end{bmatrix}.$$
(A3.2)

If zeros occur in the new matrices in the same position as in the  $M_0$  the contribution from the matrix product will vanish in the same way as above. By considering the possible allowed diagrams in turn we have found that this is indeed the case for all the graphs O ( $\omega^{(n+2)q_{\perp}-4}$ ) and O ( $\omega^{(n+3)q_{\perp}-8}$ ) (though not for  $\omega^{(n+2)q_{\perp}-3}$ , etc).

# References

Abraham D B 1980 Phys. Rev. Lett. 44 1165 de Gennes P G 1985 Rev. Mod. Phys. 57 de Oliveira M J and Griffiths R B 1978 Surf. Sci. 71 687 Domb C 1960 Adv. Phys. 9 149 Duxbury P M and Yeomans J M 1985 J. Phys. A: Math. Gen. 18 L983 Fisher M E and Selke W 1980 Phys. Rev. Lett. 44 1502 — 1981 Phil. Trans. R. Soc. 302 1 Huse D A 1981 Phys. Rev. B 24 5180 Huse D A and Fisher M E 1984 Phys. Rev. B 29 239 Huse D A, Szpilka A M and Fisher M E 1983 Physica 121A 363 Lipowsky R 1985 Phys. Rev. B 32 1731 Ostlund S 1981 Phys. Rev. B 24 298 Telo da Gama M M 1985 Fluid Interfacial Phenomena ed C A Croxton (New York: Wiley) Yeomans J M and Fisher M E 1984 Physica 127A 1

3184