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Layering transitions at an interface 

K Armitstead, J M Yeomans aud P M Duxbury 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford 
OX1 3NP. UK 

Received 1 January 1986 

Abstract. Low temperature series are used to analyse the wetting of an interface in the 
three-dimensional three-state chiral clock model. When the calculation is taken to general 
order using a matrix formulation, a large number of layering transitions are found as a 
function of the chiral field. 

1. Introduction 

Surface and interface properties are the subject of considerable interest at present. 
Research into wetting, surface reconstruction and interfacial adsorption is of relevance 
in many physical and biological fields (de Gennes 1985, Lipowsky 1985, Telo da Gama 
1985). In this paper our aim is to study interfacial wetting in a three-dimensional spin 
model, the chiral clock model (Huse 1981, Ostlund 1981). We show, using series 
methods at low temperatures, that the interface wets through a large number of 
first-order phase transitions. 

The three-state chiral clock model is defined by the Hamiltonian 

H = -Jo C' C O S [ ~ T (  n, - nj)/3] - J E" C O S [ ~ T (  ni - n, +A)/3] (1) 
(U) (0) 

where ni = 0, 1, 2 is a variable on each site, i, of a cubic lattice. The first sum is taken 
over nearest neighbours within two-dimensional layers, whereas the second is between 
nearest neighbours along the perpendicular axial direction. The ground state therefore 
has ferromagnetic layers, although the value of ni may vary from layer to layer: for 
A < the ordering between layers is ferromagnetic; for A > i, however, there is a chiral 
ground state, . . .012 012 012. . . 

To study the interface properties of the three-state chiral clock model (Huse and 
Fisher 1984), we introduce an interface perpendicular to the chiral direction by setting 
the spins at fa to the values 0 and 2 respectively. This introduces a 0 :  2 interface for 
sufficiently small A. As A is increased, however, the energy of a 0 :  1 interface (and 
equivalently 1 : 2 and 2 : 0) decreases, whereas that of a 0 : 2 interface increases. Hence 
it becomes favourable at a certain value, A =a, for the interface to wet and for the 
simple 0:  2 interface to be replaced by the configuration 0 :  11 . . . 11 : 2. Note that this 
is a purely energetic (zero temperature) argument and that the number of ones between 
the boundaries is arbitrary. 

At finite temperature entropy contributions will also be important. It is the aim of 
this paper to show that these determine n, the number of layers with n, = 1, in the 
region of A = f where the interface wets. We shall show, using a low temperature series 
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expansion (Fisher and Selke 1980, 1981), that the wetting takes place through a series 
of first-order transitions with n increasing in integer steps and shall find the width in 
A of each interfacial phase. 

The next section of this paper is devoted to describing the low temperature expansion 
and giving explicit results to third order. Hence we show how the series of interface 
transitions is built up. To this order we can see n = 1 and n = 2 appearing. To go 
further, however, and construct the complete series of phases it is necessary to pick 
out and compute the relevant terms in the low temperature expansion to all orders. 
The results of the general order calculation are presented in 0 3 with the details of the 
matrix technique used being postponed to the appendices. Section 4 provides a 
conclusion where a comparison to similar wetting phenomena is given. 

2. Low temperature expansion 

To determine the behaviour of the interface in the vicinity of A = a  we use a low 
temperature series technique and expand about all possible ground states. The standard 
low temperature expansion (Domb 1960) follows from a decomposition of the partition 
function 

) ( 2 )  ( m = l  

D 

ZN(n)=exp[-NEo(n)/kBT] 1+ AZ',"' 

where AZ',"' is the total contribution from states with m overturned spins, Eo is the 
ground state energy per spin and N is the number of spins in the lattice. Using the 
linked cluster theorem (Domb 1960) the reduced free energy per spin is then given by 

where X' AZ',"' now only contains terms linear in N. 

single spin flips which appear in (3). It is useful to define 
We first establish a notation for the primitive Boltzmann factors corresponding to 

KO = J o /  k B  T 

6 = A - $  c = cos(2rr6/3) s = sin(2rr6/3) 

K = J / k B T  
(4) 

where kB is Boltzmann's constant and T is the temperature. Then changing an in-layer 
bond from ferromagnetic to antiferromagnetic corresponds to a factor 

w =exp(-3Ko/2). ( 5 )  
Two independent Boltzmann weights are needed to describe the effects of flipping 
spins on axial bonds: 

x = exp[fK(3s - v ~ c ) ]  

y = exp[ - 4 S c ~ l  

t- 0-0 + 0-1: 

0-0 + 0-2: 

0-1 + 0-2: x-'y=exp[;K( - & c - ~ s ) ] .  (6) 
(All other possibilities follow immediately from these equations when the symmetries 
of the different spin states are considered.) 

As we aim to establish the equilibrium position of the interfaces imposed on the 
system, it is most convenient to calculate F, - F,, where F,, is the reduced free energy 
of the system when n layers of ones appear at the interface; this is because most graphs 
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cancel out when considering this free energy difference and the resulting counts depend 
only on the number of spins in the interface. We describe in some detail the results 
of the low temperature expansion up to third order to clarify the method of calculation 
and the notation used. 

2.1. Ground state 

From (1) it follows immediately that 

( E n - E , ) / k , T = 3 s K  n=O 

= O  n z l  

showing that the interface wets at A = f ,  and that, for A > f ,  all values of n f 0 correspond 
to the same interface energy. 

2.2. First order 

The first-order contributions to Fo- F, and F,  - F, are shown in tables l ( a )  and (6)  
respectively. The first column in the table shows the spin to be flipped; spins in different 
environments must be considered separately as they correspond to different Boltzmann 
weights. The second column gives the count per interface spin corresponding to each 
configuration. Only the term proportional to M, the number of spins per layer, is 
quoted as those terms proportional to higher-order powers of M and to N drop out 
when the linked cluster theorem is used in the expansion of the free energy. The 
weights are given in the third column of the table. qL is the number of nearest 
neighbours within a layer; for our case of the simple cubic lattice, qL = 4. A moment's 
thought shows that to this order F, - F, = 0, n 3 2, because no single flip can span 
the distance between the interfaces and hence distinguish between the different 
values of n. 

Summing the contributions in the table gives 

F Y ' -  F:'= ( - 2 + 2 x 2 y - ' + 4 x ~  -4x - ' y2 )wq-  ( 8 a )  

p- F 2 ' =  ( - 2 + 2 x - 2 y + 2 x y - 2 x - ' y 2 ) w ~ -  

F',"- F 2 )  = 0 n z 2 .  

Table 1. 

( a )  First-order contributions to F,- F,. 

Configuration Count Boltzmann weight 

0 0 2  
001 
000 

~~ 

2 ( l + x 2 y - ' ) w q -  
-4 (1 + x - ' y 2 ) w 9 -  

2 2xyw4- 

( b )  First-order contribution to F,  - F, 

Configuration Count Boltzmann weight 

001 - 2  (1 +x-ly2)fJJ4- 

012 1 (2X-2y)wq- 
000 1 2xyw4- 
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We may write 

y = x'+n 

and, noting from (6) that 

(9) 

expand (7) and (8) to leading order to give 

Fo- F,= -3Ks+O(w2'--' 1 
F1- F,- O( w2',-' ) 

assuming, as will be shown to be consistent later, a log x - O ( w 4 ~ - ' ) .  Therefore, to 
this order, the free energy of the interface is independent of the value of n at A =a. 

2.3. Second order 

The second-order contributions to the free energy differences Fo - F,, F ,  - F, and 
F2 - F, are shown in tables 2( a ) ,  (6)  and (c) .  Boltzmann weights now depend on the 
relative positions of the two flipped spins. To emphasise the pattern in successive 
terms of the expansion we have divided the contributing graphs into connected graphs 
grouped with their decompositions. Summing contributions in the tables gives 

FL"- F g ) =  ( - 4 + 4 ~ ~ y - ~ + 8 x ~ y ~ -  8x2y2)w24--' 

+(4-7x2y-' -6x4y-'+5xy+ 14x-'y'-x3-32x2y2+ l l y 3  

+ 12x-2y4)w29- (12a) 

+ (7 - 2x-2y  - 10x-4y2 + 12x-1y2 + 2x3 - 4x-3y3 + 6 y 3  + 7x-2y4 

- F g )  = (-4 + - 4x-2y4 + 4~'y~),3~41- '  + - 8x-'y2 + 4 ~ ~ y ' ) ~ 2 4 1 - '  

- 18~'y')w~'- (126) 

(12c) 

n 3 3 .  (12d) 

FYI - F g )  = (-3 + 3x-'y + 4xy - 5x-'y2 + x3 + 5y3 - x-'y4 - 4x2y2)w2'- 
F',2) - F(') = 0 cc 

Using (8), (9) and (10) we obtain 

Fo- Fa= -3Ks+6Ks(l+2x3)w41+8(1 - ~ ~ ) ~ w ' ~ 1 - ' - 9 ( 1  - X ~ ) ~ U ~ ' A + O ( W ~ ' - - ~ )  
(13a) 

F2-  F , - o ( w ~ ~ - - '  1. (13c) 

Fl -Fe= - 6 K ~ ( l  - x 3 ) w 4 1 +  (1 - ~ ~ ) ~ ( 4 -  5 ~ ) w " ~ - ' + O ( w ~ ~ ~ - ~ )  (136) 

On the boundary between n = 0 and n = CO, defined in first order by (1 l a ) ,  F, - F, 

The new boundaries which appear to this order between the interface phases with 
is positive. Hence the n = 1 phase must be stable in its vicinity. 

n = 0, 1 and 00 follow immediately from (13a) and (136) to be 

0 :  1 3KSo 1 = ( 1  - X ~ ) ~ ( ~ - ~ O ) W " ~ - ' + O ( W ~ ~ - - ~  1 (14a) 

1 :m 3Ksl, ,=i(1 -x3)(4- 5w)w41-' +O(O~',-~). (146) 



Layering transitions at an interface 3169 

Table 2. Disconnected configurations have been grouped with the corresponding connected 
configurations. A vertical or horizontal bar denotes a disconnection. 

( a )  Second-order contributions to F,- F,. 

Configuration Count Boltzmann weight 

7 

8 

00 01 
00101 
00 I 1  
00111 
00 22 
00122 
00 02 
00102 
00 00 
001 00 
001 
001 
001 
001 
002 
002 
og2 
0 02 
000 
0 00 
ogo 
0 00 

-4 
4 

-2 
2 
1 

-1 
2 

-2 
3 

-3 
-8 

10 

4 

-5 

4 

- 5  

( b )  Second-order contributions to Fl - F,. 

Configuration Count Boltzmann weight 

1 0001 
00101 

2 0011 
001 I 1  

3 0012 
00112 

4 0000 
oo/oo 

5 001 
001 
og 1 
001 

6 012 
012 
OL2 
012 

7 000 
0 00 

000 
090 

-2 
2 

-2 
2 
2 

-2 
2 

-2 
-4 

5 

2 

5 
- 5  

2 

5 
- 2  
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1.2 

aa 
h 
2 
2 " -  

a4 

O- 

Table 2. (continued). 

( c )  Second-order contributions to F, - F,. 

Configuration Count Boltzmann weight 

- 

- 

- 

- 

- 

I 1 I I I I I 
2 0 2 4 6 6 

1 0001 -2 (1 + xy + 2x-'y2)w24- 

00/01 2 ( 2 x y + 2 y 3 ) w 2 4 -  

2 0112 1 ( 3 x - 5  + X - l y 2 ) W * 4 -  

01112 -1 (1 + x - 2 y 4 + 2 x - l y 2 ) w 2 q  

3 0000 I ( 2 x y  + x3+y3)w24. 

OO(O0 -1 4x2y2w24- 

1.2 

aa 
h 
2 
2 " -  

a4 

O- 

The boundaries are plotted in figure 1 for J = Jo. On the 1 : CO boundary all phases 
with n 2 1 remain degenerate and we must consider higher-order terms in the series 
expansion to test their stability. 

- 

n=O 

- 

- 

- 

- 

I 1 I I I I I 
2 0 2 4 6 6 

2.4. Third order 

The third-order contributions to the energy differences Fl - F,, F2 - F, and F, - F, 
are shown in tables 3 ( a ) ,  ( b )  and (c). Boltzmann weights depend on three flipped 
spins, which give a large number of possible graphs. These results have been displayed 
explicitly because it will be useful in 5 3 to distinguish between the various contributions 
to the free energy difference. From the results in the tables one finds that on the 
boundary between n = 1 and n =CO 

F 2 -  F,=+(l - X ~ ) ~ ( ~ - ~ W ) W ~ ~ - - ~ + O ( U ~ ~ ~ - ~ )  (15a) 

F, - F, - 0(w4q1-1 1 n = 3 .  (197) 

The expression in (15a) is positive and hence the n = 2 phase is stabilised at this order 
of the expansion. 

n=O 

103 

Figure 1. Boundaries between different interface phases calculated for J,, = J = 1 including 
terms to fourth order. 
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The boundaries defined to this order between the interface phases with n = 1 ,  2 
and 00 follow immediately to be 

1 : 2  (16a) 

2:co 3 K s 2 , , = $ (  1 - x3)(4-  ~ o J ) w ' ~ - ' +  1. (16b) 

On the 2 : CO boundary all phases with n 2 2 remain degenerate and again we must 
consider higher-order terms in the series expansion to test their stability. An explicit 
calculation rapidly becomes impossible, but we now show that it is possible to pick 
out the important terms at each order of the series expansion. 

3KS, : = $( 1 - x3)(4 - 5 w ) w  'L-'+ O( w2q--3  ) 

3. General order 

To proceed with the calculation, and build up the interfacial phase diagram, we need 
to establish the leading-order contribution to F, - F, (Fisher and Selke 1980, 1981, 
Yeomans and Fisher 1984). It is intuitively obvious that the important graphs must 
span the distance between the two interfaces. The lowest-order graphs to do this will 
be chains of n spins parallel to the axial direction, as shown in figure 2 ( a ) .  Four such 
graphs remain when the difference in free energies is taken. These are listed for n = 2 
in table 2( c) and for n = 3 in table 3 ( c ) .  It is also apparent from the tables that we 
must consider all disconnected decompositions of the connected graphs, with each 
m-fold decomposition contributing a factor (-1)"' (Fisher and Selke 1981). 

To count all contributions from such axial graphs of general length together with 
their decompositions it is possible to use a transfer matrix method introduced by 

Figure 2. Graphs based on axially connected chains of n spins which contribute to F,, - F, 
to order ( a )  u n q ~ ,  ( b )  O J ( ~ + ' ) ~ L ,  (c )  0("+')~1-' and ( d )  W ( " + ~ ) ~ , - ' .  
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Table 3. Disconnected configurations have been grouped with the corresponding connected 
configurations. A vertical or horizontal bar denotes a disconnection. 

( a )  Third-order contribution to F,  - F, 

Configuration Count Boltzmann weight 

1 

2 

3 

4 

5 

6 

I 

8 

9 

0 000 1 
00/001 
0 0 0 ~ 0 1  
0 0 / 0 / 0 1  

0001 11 
00/011 
O O ~ O l l l  

0001 12 
001 01 2 
0010/12 

001 122 
001122 
001 1122 

000~00 
00~000 
00/0~00 

0001 1 

0001 2 

00122 

0 0000 

0001 
0001 
0001 
0001 
0001 
OOIO1 
00 0 1  
00101 
0001 
0001 
00 01 
00101 
0001 
0001 
00 01 
00101 
0011 
001 1 
00 11 
00111 
001 1 

00 11 
00111 
0012 
001 2 
00 12 
00112 
0012 
001 2 
00 12 
001 12  

001 1 

-2 
2 
2 

-2 
-4  

4 
4 

-4 
2 

-2 
-2  

2 
1 

-1 
-1 

1 
3 

-3  
-3  

3 
-8 

8 

10 

-10 

-8 

8 

10 

-10 

-16 

16 

20 

-20 

8 

-8 

-10 

10 

(1 + 3xy + 3x-ly2+y3)w34- 
( 1  + xy + 2x-~y2)2xyw34- 
(1+x - ' y ) (2xy+x3+y3)w3q-  
(2xy)2(1 +x- ly2)034-  
(4xy+x3+2y3+x-~y2)w34-  
(1  +xy+2x - ' y2 ) (1  +x-ly2)w34- 
( 3 x y  + x-ly2)2xyw34- 
(1  +x-ly2)22xyw3q- 
(2+xy+3x - l y2+yx -2+  x-2yJ)w34. 
(1  + xy + 2X-'y2)2x-2yw34- 
(1  +2x-Ly2+x-2y)2xyw34-  

(4xy +4x-'y2)w34- 
( 1  + X - y ) ( 1  + x - 2 y + 2 x - l y ~ ) w 3 4 -  
( 1  +x - ' y2 ) (1  +x-2y+2x-ly2)w34- 
(1  +x-iy2)22x-2yw3q- 
(2xy+2x3+2y3+2x2y2)w34- 
(2xy+x'+y3)2xyw34- 
(2xy+x3+y3)2xyw3q- 
( 2xy 1 3 ~  3 q -  

( 1  +X-'y2+y3+X-2y4)W34--2+ (xy  +2x- 'y2+ x-2y4)w34A-, 

[ ( 1 +  x - * y 4 ) w 3 4 . - 2 + 2 x - l y 2 w 3 4 ~ - , ] 2 x y  

( 4 x - ' y 2 ) (  1 + ~ - l y ~ ) w ~ ~ -  

(1 + xy + 2x-'y2)2xyw34- 

(2xy)2( 1 +x-'y2)w34 

(1 +x- ,y2)(3xy+x- 'y2)w34-  

(1  +x-ly2)3w34 

(x- 'y2+ 1 + x-3y3+ .-2y4)w34.-2+ (2x - l y2 f  x-2y + x-2y4)w34--' 

I 2 ~ - ~ y [ (  1 + ~ - ~ ~ ~ ) ~ 3 4 , - 2 +  2x-ly2w34L-1 

( l + x - ' y 2 ) ( 1 + X - 2 y + 2 x - l y 2 ) w 3 ~ ~  

( 1  + x-~y2)22x-2yw34- 
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Table 3. (continued). 
_ _ _ _ _ _ -  

Configuration Count Boltzmann weight 

10 0012 
001 2 
0012 
001 2 
00 12 
001 12 
00 1 2  
00112 

11 0000 
0 000 
0000 
0 000 
00 00 
001 00 
00 go 
00100 

12 001 
001 
001 
001 
001 
001 
001 
oq 1 
001 

13 012 
012 
012 
012 
012 
012 
012 
012 
012 

14 000 
000 
000 
0 00 
000 
0 00 
000 
000 
0 00 

8 

-10 

-8 

10 

16 

- 20 

-16 

20 

-12 

32 

62 
-7 

6 

-16 

3 1  
3 

_ -  

6 

-16 

- 31 
3 

( b )  Third-order contribution to F2 - F,. 

Configuration Count Boltzmann weight 

1 00001 
00/001 
000/01 
0 0 ~ 0 ~ 0 1  

001 01 1 
0001 11 
00/0111 

2 00011 

-2 
2 
2 

-2 
-2 

2 
2 

-2 

(1 +3xy + 3x-'y2+y3)w'q- 
(1 +xy+2x-ly2)2xyw34- 
(1 +x-'y)(2xy+x3+y3)w34- 
(2xy)2(1 +x-'y7w34- 
(4xy + x3+2y3+ x-ly2)w34- 
( 3 ~ y  + ~ - ~ y ~ ) 2 ~ y ~ ~ 4 l  
(1 + x y + 2 x - ' y 2 ) ( 1 + x - l y 2 ) w 3 4 -  
(1 + x-ly2)22xyw34. 
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Table 3. (continued). 

Configuration Count Boltzmann weight 

3 00112 
001112 
001112 
001 1 I12 

001 000 
0000~0 
00/0~00 

4 00000 

5 0001 
0001 
0001 
00101 
000 1 
0001 
0001 
00 /01  

6 0001 
0001 
00 01 
00101 
0001 
0001 
0001 
00/01 

7 0112 
0112 
01  12 
0 1 / 1 2  
0 /12  
0112 
0 1  12 
0 1 / 1 2  

8 0000 
0 000 
00 00 
00100 
oogo 

00 00 
00100 

0000 

2 ( 1 + xy + 5x -  Iy2 + yx-2) w34- 
-2 (3x -2y+x - l y2 ) (1  +x-ly2)w39- 
-2 (3xy+x - ' y2 ) (1  +x- 'y* jw34-  

2 (1  +x-ly2)3w34. 
2 

-2  
-2 

2 
-8 

8 

10 

-10 

-8 

8 

10 

-10 

8 

-8 

-10 

10 

8 

-8 

-10 

10 

( c )  Third-order contributions to F3 - F,. 

Configuration Count Boltzmann weight 

1 00001 -2 (1+3xy+3x-'y2+y3)w34- 
0 0 ~ 0 0 1  2 ( l + x y + 2 x - ' y ~ ) 2 x y w 3 4 .  
0 0 0 ~ 0 1  2 (1 +x- ly) (2xy+x3+y3)w34-  
001 01 01 -2 (2xy)2(1 +x-'y2)w34L 

2 01112 1 ( 4 x  -2y + 4 x  - I$)  w 3 9 A  

011/12 -1 (1  + X - ' y * ) ( i  + ~ ~ + 2 ~ - ~ ~ ~ ) ~ ~ q -  
011112 -1 ( I + x - l y 2 ) ( l + x y + 2 x - ~ y * ) w 3 ~ 1  
0111112 1 2 x y ( l +  x-ly2)2w39, 

3 00000 1 (2xy+2x3+2y3+2x2y2)w34- 

001 000 -1 (2xy + x3+y3)2xyw'q- 
001 01 00 1 (2xy )3 39-  

ooo/oo -1 (2xy+  x3+y3)2xyw39-  
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Yeomans and Fisher (1984). This allows the chain of flipped spins to be built up step 
by step with the appropriate Boltzmann factor for a connected or disconnected spin 
being included at each stage. Details of the method are given in appendix 1 of this paper. 

Using (9) and (10) in the matrix products, we find that there is, in fact, a zero 
contribution to order n, but to order n + 1 ,  

( F ( , " ) - F g ) ) ' =  - ( l+n)3Ks( l  - X ~ ) ~ W " ~ -  (17)  

where ' indicates that we are only considering a subset of the contributions to the free 
energy difference because new graphs will also be important to order n + 1. These are 
axially connected chains of length n with a single protruding spin on the side, as 
shown in figure 2 ( b ) .  These graphs, together with their decompositions, are shown 
for F2- F, at third order in table 3 ( b ) .  The leading-order contributions from them 
may be calculated using an extended version of the transfer matrix which is described 
in appendix 2 .  One obtains, putting y = x2, 

(F(,"+')- Fg+1) ) '=  n( l  _X3)nt'(4-5W)w(n+l)¶,-l (18) 

Summing (17) and (18) gives 

F,,-F,= -3Ks(l+ n)(l-x3)nwn~~+n(1-x3)"~'(4-5~)w~"~'~4~-'+O(~'"~2'q~~3 1. 
(19) 

The correction term in (19) (and indeed in (14), (15) and (16)) deserves some 
comment as one would naively expect it to be w(n+Z)q1-4 and w(n+3)41-8 due to 
corrections from graphs such as those shown in figure 2 ( c )  and 2 ( d )  where the 
protruding spins flip to the same state as their neighbours. It is, however, shown in 
appendix 3 that these give zero contribution. 

We now build up the phase diagram to general order by an inductive argument. 
Consider the point at which the phase ( n  - 1) has just become stable. From (19) one 
finds the phase boundary between ( n  - 1 )  and CO to be 

n - 1  
3 Ks,-, : = ( 1 - x3)( y ) (4 - 5 0 ) w  ',-l+ O( w 2 ¶ l P 3  1- 

The nth phase is stable if F,, - F, is positive along the n - 1 : CO boundary. Putting 
s = s,,-' :,, F,, - F, is given by 

This is positive, so therefore the nth phase is stable, and we go on to build up a 
sequence of layering transitions. The width of the nth phase is given by 

which is a rapidly decreasing function of n. Note that it would not be valid to deduce 
that there are an infinite number of layering transitions, as the correction terms may 
become important when n-' - O ( w )  and the sequence may terminate at some finite n. 

4. Conclusion 

We have shown that a low temperature series for the three-dimensional three-state 
chiral clock model predicts wetting proceeds via a series of layering transitions. A 
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similar phenomenon was first predicted by de Oliveira and Griffiths (1978) who used 
mean-field theory to show that an interface unbinds from a surface through a series 
of first-order transitions as the bulk field tends to zero. More recently Duxbury and 
Yeomans (1985) demonstrated that these results could be reproduced using low 
temperature series and that, for the Abraham (1980) model, where the interface is 
bound by a row of weak bonds at the surface, at least two layering transitions occur. 

At higher temperatures we expect the wetting transition to be continuous as, above 
the roughening temperature, it is not possible to distinguish between different layers. 
This is indeed the situation found by Huse et al (1983) for the two-dimensional chiral 
clock model. We also note that, although the two-dimensional wetting line of Huse 
er a1 (1983) curves to smaller A as the temperature is increased, the three-dimensional 
results indicate a curve to larger A. This is because of the role of roughening in two 
dimensions: the interfaces try to perform infinite fluctuations about their mean positions 
and hence repel each other. In three dimensions, at low temperatures, however, the 
interfaces are not rough and fluctuations are not so large. The lowest-order contribution 
to the free energy (and indeed the mechanism for the multilayer adsorption) is from 
correlated fluctuations. Hence there is an effective attraction of the interfaces near A = a. 

We are at present studying wetting in the chiral clock model using a mean-field 
theory. The mean-field results, which will be presented elsewhere, show a first-order 
transition to n = 1,  followed by a transition to n = CO. 
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Appendices. The matrix method 

In these appendices we explain how to calculate the diagrams which contribute to the 
interface free energy to leading order. We first consider axially connected chains and 
then chains with a single kink or bump as shown in figures 2( a )  and 2( b )  respectively. 
We then show that configurations corresponding to a double kink or bump (figure 
2 ( c ) )  give zero contribution O ( W ( " + ' ) ~ ~ - ~  ). 

Appendix 1. Axial chains of length n 

A l . l .  Middle matrices 

The transfer matrix method for calculating the Boltzmann factor associated with chains 
of length n has been described in Yeomans and Fisher (1984). We therefore limit 
ourselves to a brief outline of the method and a list of the transfer matrices appropriate 
to the problem in hand. The idea is to use a transfer matrix to record the Boltzmann 
factors as a line of flipped spins is sequentially built up. Consider, for example, adding 
the bond between two spins, a and b, in state 0. Each spin may flip to two possible 
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states, 1 and 2, and the corresponding Boltzmann factors may be recorded in matrix 
form: 

spin b 
1 2  

( A l . l )  

There is also the possibility of spins a and 6 being disconnected. This involves a 
negative contribution to the weights (Yeomans and Fisher 1984) 

spin b 
1 2  

MI'= spin a 2[ 1 -xy -x2 l l ] w q L  
(A1.2) 

where, for example, xy which appears in the top left-hand comer of the matrix is the 
product of the Boltzmann factors associated with 0-O+ 0-1 and 0-O+ 1-0. 

Hence the total contribution of a 0-0 bond is 
1 2 

M = M'+ M" = 

We shall also need the matrix that adds a 0-1 bond: 
2 0 

(A1.3) 

(A1.4) 

A1.2. Initial vectors 

The initial bond in a chain is added by a row vector. The configurations we shall 
require are 

1 2 
- 0-0 Mi = O [ X  Y lwqL (A1.5) 

2 0 
_. 0- 1 Ni = o[x - ' y  x - ' 1  w q1. (A1.6) 

A1.3. Final vectors 

Similarly the final spin is added by a column vector. ( A  factor 0.1 is not now necessary 
as no in-layer bond is added.) 

- 0-0 0-1 
0 1 

M,='['] Nf= 1 [ x-' ] 2 x  2 x-1y . 

A1.4. Matrix products 

(A1.7) 

We expect the leading contributions to the difference in free energies to be associated 
with axial chains of length n which connect the two interfaces. The total Boltzmann 
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factor for such chains of spins may now be calculated by forming products of the 
matrices listed above. As explained in the text the spin chains which contribute to 
F,, - F, in nth order, together with their corresponding matrix products, are 

Configuration Count Matrix product 
(the italics contain 
n spins) 
0111 . . .  1 1 1 2  1 Ni M ' N f  
0000.. .0001 - 1  MiM"-'Nf 
0111. .  . l l l l  -1 Ni M " M f  (Al .8 )  

0000. . .0000 1 M~ M -' M~ 
Hence 

F:, - F& = ( N ,  - Mi)( M " - I ) (  Nc- Mf).  (A l .9 )  

Performing the products, summing over the appropriate counts and using (9) and 

( A l .  10) 

Hence the 0(ofl4-) contribution to F,, - F, is zero, and the leading-order term in 
the free energy difference will be -a(log x ) u n q -  - u ( " + ' ) ~ J - ' .  The prime on the free 
energies is used to indicate that we must include other contributions at this order. 

(10) gives 
F:, - F:, = (Y log x(i + n ) ( l -  x 3 ) n ~ f l q -  + O ( U ( " + ~ ) ~ _ - ~  1. 

A1.5. Axial chains of length n + 1 

Because the leading-order term in the free energy difference is O ( U ( " + ' ) ~ L - ~  ) we must 
also consider contributions from axial chains of length n + 1. Those which contribute 
to the free energy difference (see, for example, table 3 ( b ) )  are 

Configuration Count Matrix product 
(the italics contain 
n + 1 spins) 
0000. . .0001 -2  MiM"Nf 
0000.. .0011 -2  Mi  M "-I N M f  
0111 . . .  1122 2 NiM " N M f  
0000. . .0000 2 MiM"M,-. 

( A l . l l )  

Summing the matrix products and specialising to y = x2 to obtain the leading order 

FL- FI,=O+O(w("+2'q--'  1. (A1.12) 

Therefore axial chains of length ( n  + 1 )  do not contribute in leading order. However, 

gives 

we must consider other contributions. 

Appendix 2. Axial chains with a single kink or bump 

We now show how to calculate the configurations shown in figure 2 ( b )  which also 
contribute to F,,-F, at order n + l .  The easiest way to deal with these seems to be 
to consider sparse 8 x 8 matrices which add the Boltzmann factors of the bonds between 
two adjacent spins in each of two consecutive layers, together with the in-layer bonds 
in the right-hand layer. Note that the matrices will only give the correct leading-order 
term when multiplied together. 
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A2.1. Middle matrices 

We consider, as an example, the matrix which connects two zero layers 
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To construct the matrix note the following. 
(i) The labelling of the rows and columns follows because each spin can flip to 

state 1 or 2 or remain in its original state. At least one of the two spins must flip, 
however; hence we need not consider :. 

(ii) Our aim is to build up the configurations shown in figure 2( b )  and variants 
where the kink or bump moves along the chain or the diagram is rotated about the 
axial direction. (The linear configurations, considered separately in appendix 1, are 
also included in this formalism.) We always take the first spin to lie on the lowest line 
of the pair considered (in terms of how the matrix is labelled) to avoid overcounting. 
It is then immediately apparent that 

( a )  the configurations in the bottom right-hand corner of the matrix are not allowed 
as they contribute in higher order; 

( b )  zero configurations in the top left-hand corner are disallowed because they 
correspond to disconnected spin chains, and 

(c)  the top two rows on the right-hand side of the matrix must correspond to zero 
entries as configurations such as A would introduce a second kink into the chain and 
hence be of higher order. 

(iii) We now consider the non-zero portions of the matrix. 
( a )  The two 2 x 2 filled blocks in the top left-hand quadrant of the matrix correspond 

to adding a single axially connected or disconnected spin. They are therefore the same 
as (A1.3) in appendix 1. 

( b )  The bottom left-hand quadrant also corresponds to adding a single connected 
or disconnected spin. Hence the Boltzmann factor of the bond to the flipped spin 
neighbouring an unflipped spin must also be considered. 

(c)  The non-zero terms on the right-hand side of the matrix are of a more compli- 
cated form because two spins are added and three disconnected configurations must 
be taken into account. Consider the ? term. This, when connected, corresponds to 
a factor 4xw2ql -2 ,  the x from the 0-1 bond on the top row (and the 1-1 bond on the 
bottom row which gives a factor l) ,  and the u 2 q ~ - 2  from the in-layer contribution. The 
factor of four appears to count the possible rotations of this configuration around the 
axial direction. If there is a disconnection between the two spins on the bottom row 
one obtains Taking the disconnection to lie between the two bonds in 
the same layer gives - 5 ~ 0 ~ ~ 1 .  Note the factor five, not four; this occurs because there 
are five forbidden positions for the disconnected spin. Finally, if both disconnections 
are present one must add a term 5 x 2 y w 2 q ~ .  

The other 8 x 8 matrix (see opposite page) which we shall need adds two spins in 
state 1 to two in state 0. This, by similar reasoning, is given by 
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- 
1 x - l  
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0 
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- 

A2.2. Initial vectors 

The initial two spins in a given chain are added by the row vectors 

1 

0 
0 

2 
1 
1 
2 
1 

1 
2 

2 

0-0 

- -  

o y  

2 x  

l Y  

O x  

Y 2  

xy 

xy 

x 2  
- -  

I 
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0 0 1 2  1 1 2 2 

O[  0 0 x y y ( 4 W 4 - - * - 5 W 4 - )  & y ( 4 W 4 - - '  -5w4.) f x y ( 4 w 4 - - '  -5w4-)  iy2(4w4.-2 

- 5 w 4 1 ) ] w 4 -  

( A 2 . 3 )  

0-1 
I 

2 0  1 I 2 0 2 0 
1 1  2 0 2  2  0 0 

O[ 0 0 x - I y  x - '  jx-2g2(4w4-- ' -5w4-)  fx-'y(4"q.-'-5"'.) ; * - 2 y ( 4 W q - - ' - 5 W q . I  j x - ' ( 4 w ~ ~ - ' - 5 w ~ , ) ] w ' ~ .  

('42.4) 

The first two entries are zero because we fix the first flipped spin to be the bottom 
spin and the second two should be compared to (A1.5) and ( A 1 . 6 ) .  The other terms 
allow for both spins in the first layer to be flipped and for the possibility of their being 
disconnected. The factor of two appears because the matrix product counts the 
diagrams p m j  and as distinct when this is not the case. 

A2.3. Final vectors 

The column vectors which add the bonds to the right of the final flipped spins are 

0-0 
I 

0 

0-1 
I 

1 

( '42.5)  



Layering transitions at an inte$ace 3183 

A2.4. Matrix products 

To calculate the ( n  + 1)th order contribution to F,, - F, we should now use the full 
matrices which allow for single kinks and bumps on axial chains of length n. The 
configurations we need consider are exactly those shown in (A1.8) and indeed the 
results (A1.lO) and (A1.12) also follow from using the 8 x 8 matrices. It is, however, 
easier to treat the linear chains separately using the smaller matrices as the full 
dependence on x and y is important, and to put y = x2 in the general case so that only 
the 'kink and bump' terms survive. If this is done the matrix products simplify 
considerably and can be performed explicitly to give 

Fk - F L  = -3 Ks(  1 + n )  

). (A2.6) x (1 -x3)"w"4,+ n(1  -X3)'+'(4-5w)W('+')q,-' + O( ( n  + 1 )9,-3 

Appendix 3. Axial chains with two kinks or bumps 

As we are considering a cubic lattice we must also count graphs with ( n  + 2) spin flips 
which can contribute in order W ( " + ' ) ~ _ .  Such terms are generated by 
connected or disconnected axial chains of length n, with two kinks or bumps as shown 
in figure 2(c), if all the overturned spins within a given layer flip to the same state. 
In-layer disconnections need not be considered. Moreover, w("+3)q1-8 terms, which 
are also of this order, appear from graphs like that depicted in figure 2( d )  if the square 
of spins all flip to the same state. 

In this appendix we show the contribution from these graphs is zero to leading 
order. This occurs for the same reason as the vanishing of the contribution from axial 
chains of length n and n + 1 (see (A1.lO) and (A1.12)) to order n and n + 1 respectively. 
We first demonstrate why this happens, showing that in fact the matrix product is zero, 
not only when all possible spin flips are taken into account, but also term by term for 
each flipped configuration: 

( n l +  n l + a l ,  n2+ n 2 + a 2 , .  . . n,,+ n, +a,) 

when the sum over the four contributing graphs (A1.8) or ( A l . l l )  is taken. Writing 
out (A1.9) explicitly for y = x2: 

ai = *1 i = 1,2, . . . , n 

FL- F&=[O, x - ' - x ] ( ~  -x3)"- '  U'¶-. (A3.1) 

It is immediately apparent that if a, = 1, FL - F L  = 0 because the first term in the initial 
row matrix is zero. If al  = 2 and a2 = 1, the difference is zero because the matrix has 
a zero term in the bottom left-hand corner. Similarly if a, = 2, a2 = 2, a3 = 1, and so 
on, until for ai = 2 for all i the product must be zero because the bottom term in the 
column vector is zero. Note that this argument hinges on the zero in the middle matrix 
which only occurs because both connected and disconnected configurations give the 
same Boltzmann factors. 

We now turn to the case of axial chains with several kinks or bumps. The 
contribution from any particular diagram may still be written as a product of 2 x 2  
matrices, if MO is replaced by a new matrix whenever there is a kink or bump to allow 
for the additional spins in the layers. For example, the matrix which adds a layer 
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which includes a kink in the same state is 

0 1 2 

(A3.2) 

If zeros occur in the new matrices in the same position as in the MO the contribution 
from the matrix product will vanish in the same way as above. By considering the 
possible allowed diagrams in turn we have found that this is indeed the case for all 
the graphs 0 ( ~ ( “ + * ) ~ 1 - ~ )  and 0 ( w ( “ + ~ ) ~ - - * )  (though not for w(n+2)q1-3 , etc). 

0-0 1 (4x -4x2y)w24.-2 (4xy -4y3)w24.-2 
2 [  (4xy -4x3)w241-2 (4y -4xy)w24--2 
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